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The story so far...

For those who took Math 4280 you essentially studied the
following problem:

How to compute ρ[L]?

Where:

ρ is some (potentially) coherent risk measure e.g.
ES/TCE/CVaR, etc...

L is some random variable representing a loss.
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Some Questions

Q1: What do you do when L is equal to a sum of smaller RVs?

Q2: How do you introduce time to this model?

Q3: How do I estimate the parameters of the model for L...if I
don’t have a nice heterogeneous sample?
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Some Questions

Q1: What do you do when L is equal to a sum of smaller RVs?
⇒ Module 1: Aggregate Loss Models

Q2: How do you introduce time to this model?
⇒ Module 2: Ruin Theory

Q3: How do I estimate the parameters of the model for L...if I
don’t have a nice heterogeneous sample?
⇒ Module 3: Credibility
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Models for aggregate losses

A portfolio of insurance contracts or an insurance contract will
potentially experience a sequence of losses:

X1,X2,X3, . . .

We are interested in the aggregate sum S of these losses over a
certain period of time.
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Assumptions going forward

How do losses relate to each other?

↪→ Assume independent Xi ’s.

When do these losses occur?

↪→ Assume no time value of money i.e. short term models

How many losses will occur?

↪→ if deterministic (n) −→ individual risk model
↪→ if random (N) −→ collective risk model
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Definition: The Individual Risk Model

The Individual Risk Model1

S = X1 + · · ·+ Xn =
n∑

i=1

Xi ,

The random variables Xi , i = 1, 2, ..., n, are assumed to be
independent

BUT they are not assumed to be identically distributed.

Typically the Xi ’s have mass at 0 (representing no
loss/payment).

1Refer to Def. 9.2 in the loss model textbook
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Definition: The Collective Risk Model

In the Collective Risk Model, aggregate losses become

S = X1 + . . .+ XN =
N∑
i=1

Xi .

This is a random sum. We make the following assumptions:

N is the number of claims

Xi is the amount of the ith claim

the Xi ’s are iid with

CDF F (x)
P(D/M)F f (x)
Moments exist and are finite!

the Xi ’s and N are mutually independent
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How to compute S?

We will study methods to get probabilities about S :

1 If possible we will get the true distribution of S via:

Convolutions
Method of generating functions

2 Otherwise we will approximate with the help of the moments
of S
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Examples of The IRM vs CRM

A group life insurance contract where each employee has a
different age, gender, and death benefit2.

2ex 9.2 of the loss models book
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Examples of The IRM vs CRM

A reinsurance contract that pays when the annual total medical
malpractice costs at a certain hospital exceeds a given amount.
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Examples of The IRM vs CRM

A dental policy on an individual pays for at most two checkups per
year per family member. A single contract covers any size family
at the same price.
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An example for the collective Risk model

An insurable event has a 10% probability of occurring and when it
occurs results in a loss of $5,000. Market research has indicated
that consumers will pay at most $550 to purchase insurance
against this event. How many policies must a company sell in order
to have a 95% chance of making money (ignoring expenses)?3

3ex 9.1 of the loss models book
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Probability Generating functions

Definition (PGF)

Given a discrete RV X . We define the Probability Generating
Function(PGF) pX (t) as:

pX (t) = E
[
tX
]

i.e:

pX (t) = Pr [X = x0]tx0 + Pr[X = x1]tx1 + Pr[X = x2]tx2 + . . .
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Properties

There is a 1-1 relation between a distribution and its PGF.

If X is an integer-valued random variable, then the PGF is

pX (t) = E
[
tX
]

=
∞∑
n=0

Pr[X = n]tn,

which is in fact the Taylor series of pX (t):

Pr[X = n] =
dn

dtn pX (t) |t=0

n!
.

If Xi , i = 1, · · · , n are independent, then:

pX1+···+Xn (t) = pX1 (t) pX2 (t) · · · pXn (t)



Introduction to this course
Start of Module 1: Intro to Aggregate Loss Models

Generating Functions and Convolutions

Generating Functions
Convolutions

Moment Generating functions

Definition (MGF)

For a continous random variable X we define the Moment
Generating Function (MGF) as:

MX (t) = E
(
etX
)
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Properties

There is a 1-1 relation between a distribution and its MGF.

Taylor Expansion:

MX (t) = 1+E [X ]t+E [X 2]
t2

2
+E [X 3]

t3

6
+. . .+E [X k ]

tk

k!
+. . .

and thus

E [X k ] =
dk

dtk
mX (t)

∣∣∣∣
t=0

If Xi , i = 1, · · · , n are independent then:

MX1+···+Xn (t) = MX1 (t)MX2 (t) · · ·MXn (t)
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Why do we care?

As we said there is a 1-1 relation between a distribution and
its MGF or PGF.

Sometimes, mS(t) or pS(t) can be recognised: this is the case
for infinitely divisible distributions (Normal, Poisson, Inverse
Gaussian, . . . ) and certain other distributions (Binomial,
Negative binomial)

Otherwise, mS(t) or pS(t) can be expanded
numerically to get moments and/or probabilities
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Example Consider a portfolio of 10 contracts. The losses Xi ’s for
these contracts are i.i.d. Poisson RVs with parameter 100.
Determine the distribution of S .
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Example Consider three independent RVs X1, X2, X3. For
i = 1, 2, 3, Xi has an exponential distribution and E [Xi ] = 1/i .
Derive the PDF of S = X1 + X2 + X3 by recognition of the MGF of
S .
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Convolutions

The operation of computing the distribution of the sum of
two independent random variables is called a convolution. It is
denoted by:

FX+Y = FX ∗ FY

The result can then be convoluted with the distribution of
another random variable:

FX+Y+Z = FZ ∗ FX+Y

And so on...(as we will see for n-fold convolutions)
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Formulas

Continuous case:

CDF: FX+Y (s) =
∫∞
−∞ FY (s − x) fX (x) dx

PDF: fX+Y (s) =
∫∞
−∞ fY (s − x) fX (x) dx

Discrete case:

CDF: FX+Y (s) =
∑

x FY (s − x) fX (x)

PMF: fX+Y (s) =
∑

x fY (s − x) fX (x)
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n-fold convolutions

For i.i.d. continuous random variables Xi with a common CDF
FX (x), the n-fold convolution of FX (x) is denoted by F ∗nX (x):

F ∗kX (x) =

∫ ∞
−∞

F
∗(k−1)
X (x − y) fX (y)dy

=

∫ x

0
F
∗(k−1)
X (x − y) fX (y)dy if positive support

for k = 1, 2, . . . where:

F ∗0X (x) =

{
0, x < 0

1, x ≥ 0
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n-fold convolutions (Cont.)

Continuous case PDF for k = 1, 2, . . . :

f ∗kX (x) =

∫ ∞
−∞

f
∗(k−1)
X (x − y) fX (y)dy

=

∫ x

0
f
∗(k−1)
X (x − y) fX (y)dy if positive support
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n-fold convolutions (Cont.)

Discrete case:

CDF:

F ∗kX (x) =
x∑

y=0

F
∗(k−1)
X (x − y) fX (y) for x = 0, 1, . . . , k = 2, 3, . . .

PMF:

f ∗kX (x) =
x∑

y=0

f
∗(k−1)
X (x − y) fX (y) for x = 0, 1, . . . , k = 2, 3, . . .
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Why?

Exercise: Show the convolution gives the distribution for the sum.
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