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The story so far...

For those who took Math 4280 you essentially studied the
following problem:

‘ How to compute p[L]?‘

Where:

@ p is some (potentially) coherent risk measure e.g.
ES/TCE/CVaR, etc...

@ L is some random variable representing a loss.
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Some Questions

Q1: What do you do when L is equal to a sum of smaller RVs?

Q2: How do you introduce time to this model?

Q3: How do | estimate the parameters of the model for L...if |
don’t have a nice heterogeneous sample?



Introduction to this course

Some Questions

Q1: What do you do when L is equal to a sum of smaller RVs?
= Module 1: Aggregate Loss Models

Q2: How do you introduce time to this model?
= Module 2: Ruin Theory

Q3: How do | estimate the parameters of the model for L...if |
don’t have a nice heterogeneous sample?
= Module 3: Credibility
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Models for aggregate losses

A portfolio of insurance contracts or an insurance contract will
potentially experience a sequence of losses:

X1, X2, X3, . ..

We are interested in the aggregate sum S of these losses over a
certain period of time.
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Assumptions going forward

@ How do losses relate to each other?
< Assume independent X;'s.

@ When do these losses occur?
< Assume no time value of money i.e. short term models

@ How many losses will occur?

— if deterministic (n) — individual risk model
— if random (N) — collective risk model
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Definition: The Individual Risk Model

The Individual Risk Model®
S=Xi+-+ X =) X,
i=1

@ The random variables X;, i = 1,2,..., n, are assumed to be
independent

@ BUT they are not assumed to be identically distributed.

e Typically the X;'s have mass at 0 (representing no
loss/payment).

!Refer to Def. 9.2 in the loss model textbook
I
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Definition: The Collective Risk Model

In the Collective Risk Model, aggregate losses become
N
5=X1+...+XN:ZX,'.
i=1

This is a random sum. We make the following assumptions:

@ N is the number of claims
@ X; is the amount of the /th claim

@ the X;'s are iid with

o CDF F(x)
o P(D/M)F f(x)
e Moments exist and are finite!

o the X;'s and N are mutually independent
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How to compute 57

We will study methods to get probabilities about S:

@ |If possible we will get the true distribution of S via:

e Convolutions
o Method of generating functions

@ Otherwise we will approximate with the help of the moments
of S
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Examples of The IRM vs CRM

A group life insurance contract where each employee has a
different age, gender, and death benefit?.

2ex 9.2 of the loss models book
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Examples of The IRM vs CRM

A reinsurance contract that pays when the annual total medical
malpractice costs at a certain hospital exceeds a given amount.
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Examples of The IRM vs CRM

A dental policy on an individual pays for at most two checkups per
year per family member. A single contract covers any size family
at the same price.
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An example for the collective Risk model

An insurable event has a 10% probability of occurring and when it
occurs results in a loss of $5,000. Market research has indicated
that consumers will pay at most $550 to purchase insurance
against this event. How many policies must a company sell in order
to have a 95% chance of making money (ignoring expenses)?3

3ex 9.1 of the loss models book



Start of Module 1: Intro to Aggregate Loss Models

An example for the collective Risk model
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An example for the collective Risk model
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Probability Generating functions

Definition (PGF)
Given a discrete RV X. We define the Probability Generating
Function(PGF) px(t) as:

px (t) = E [tx}

px (t) = Pr[X = xo|t™® + Pr[X = x1|t** + Pr[X = x|t + ...
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Properties

@ There is a 1-1 relation between a distribution and its PGF.

e If X is an integer-valued random variable, then the PGF is
px (t) = E [rX} =3 PrX = n)e",
n=0

which is in fact the Taylor series of px (t):

dn
e t) =
n] ain PX ( ) ‘t 0

Pr[X = _

o If X;,i=1,---,n are independent, then:
Pxy 4+, (£) = px, (1) Px, () - - px, (1)
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Moment Generating functions

Definition (MGF)
For a continous random variable X we define the Moment
Generating Function (MGF) as:

My (t) = E (efx)
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Properties

@ There is a 1-1 relation between a distribution and its MGF.

@ Taylor Expansion:

Mx (t) = 1+E[X]t+E[X2]§+E[X3]€+. : .+E[X"]ﬂ+

and thus
k

E[X ] = d ——mx (t)
t=0
o If X;,i=1,---,n are independent then:

Mx,4...4x, (t) = Mx, (t) Mx, (t)--- Mx, (t)
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Why do we care?

@ As we said there is a 1-1 relation between a distribution and
its MGF or PGF.

@ Sometimes, ms(t) or ps(t) can be recognised: this is the case
for infinitely divisible distributions (Normal, Poisson, Inverse
Gaussian, ...) and certain other distributions (Binomial,
Negative binomial)

o Otherwise, ms(t) or ps(t) can be expanded
numerically to get moments and/or probabilities
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Example Consider a portfolio of 10 contracts. The losses X;'s for
these contracts are i.i.d. Poisson RVs with parameter 100.
Determine the distribution of S.
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Example Consider three independent RVs Xi, X5, X5. For

i =1,2,3, X; has an exponential distribution and E[X;] = 1/i.
Derive the PDF of S = Xj; + X, + X3 by recognition of the MGF of
S.
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Convolutions

@ The operation of computing the distribution of the sum of
two independent random variables is called a convolution. It is
denoted by:

Fxy+y = Fx * Fy

@ The result can then be convoluted with the distribution of
another random variable:

Fxyvy+z = Fzx Fxyy

@ And so on...(as we will see for n-fold convolutions)
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Formulas

Continuous case:
e CDF: Fx+y f Fy S—X) fx( )dX
e PDF: fx .y (s) = ffooo fy (s — x) fx (x) dx

Discrete case:

o CDF: Fx .y (s) =
o PMF: fi,y (s) =

2 Fy (s =x) fx (x)
2 fy (s = x) fx (%)
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n-fold convolutions

For i.i.d. continuous random variables X; with a common CDF
Fx(x), the n-fold convolution of Fx(x) is denoted by Fx"(x):

Ff(x) = / FRD (x = y) Fx(y)dy
- /0 F;(k_l) (x —y) fx(y)dy if positive support

for k =1,2,... where:
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n-fold convolutions (Cont.)

Continuous case PDF for k =1,2,...:

400 = [ R e el

—00

- /0 fX*(k_l) (x —y) fx(y)dy if positive support
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n-fold convolutions (Cont.)

Discrete case:

o CDF:
F o) =3 A D (x—y) fx(y) for x=0,1,..., k=2,3,...
y=0
o PMF:
f;k(x):Zf;(kfl)(x—y)fx(y) forx=0,1,..., k=2,3,...
y=0
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Why?

Exercise: Show the convolution gives the distribution for the sum.
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