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An Example Exercise of a Convolution

Requested last class. Consider 3 independent discrete RVs with
PMFs:

f1 (x) =
1
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for x = 0, 1, 2
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,
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for x = 0, 2

f3 (x) =
1

4
,
1

2
,
1

4
for x = 0, 2, 4

Complete the following table for the PMF f1+2+3 and the CDF
F1+2+3 of the sum of the three random variables.
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x f1 (x) f2 (x) f1+2 (x) f3 (x) f1+2+3 (x) F1+2+3 (x)

0 1/4 1/2 1/8 1/4 1/32 1/32
1 1/2 0 − 0 − 3/32
2 1/4 1/2 − 1/2 − 7/32
3 0 0 − 0 − −
4 0 0 − 1/4 − −
5 0 0 0 0 − −
6 0 0 0 0 − −
7 0 0 0 0 − −
8 0 0 0 0 − −

E.g. f1+2(0) = f1(0)f2(0) =
�
1
4

� �
1
2

�
= 1

8 as given.
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Another Example Exercise of a Convolution

Consider independent X ,Y ∼ U [0, 1]. Find the pdf of X + Y :
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The Normal MGF

A quick review of how to handle some kinds of Gaussian integrals.
Note that1:

tx − (x − µ)2

2σ2
= −(x − (µ+ σ2t))2

2σ2
+ µt +

σ2t2

2

Then clearly for X ∼ N (µ,σ2):

E [etX ] = eµt+
σ2t2

2


 1√

2πσ
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e−
(x−(µ+σ2t))2
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
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σ2t2

2

1complete the square



Generating Functions and Convolutions (cont.)
Frequency and Severity in the IRM

Another IRM example

Example: Consider a portfolio of 10 contracts. The losses Xi ’s for
these contracts are i.i.d. Normal RVs with mean 100 and variance
100. Determine the distribution of S .
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Normal Approximations for the distribution of the Sum

Assume X1, · · · ,Xn are independent and S = X1 + · · ·+ Xn.

Then E [S ] =
�n

i=1 E [Xi ], Var [S ] =
�n

i=1 Var [Xi ]

When n is large (at least 30), the distribution of S−E [S]√
Var(S)

can

be approximated by the standard normal distribution.
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Theoretic Foundation of Normal Approximations

The central limit theorem2:

S − E [S ]�
Var(S)

d−→ N(0, 1)

Q: why the ”d” above the arrow?

Q: How could this apply to the normal approximation to the
binomial I used yesterday?

Q: How to prove the CLT via using MGFs

2Theorem 3.7 of the loss models textbook
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A proof of the CLT
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A proof of the CLT
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A Problem Unique to the IRM

In the CRM we call N the ”frequency distribution” and Xi the
”severity”.

Recall in the IRM N is fixed at n, some number we know a
priori.

But not every individual is always claiming coverage, in fact,
the opposite is true.
⇒ Must be a big mass of probability at x = 0!

How to handle this?
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A Problem Unique to the IRM

For example consider a individual loss like so:

�
Pr (X = 0) = 1/2,
fX (x) =

1
2βe

−βx , for β = 0.1, x > 0

Q: How easily can we take convolutions?

Q: How easily can we take n-fold convolutions?

Q: Mean? Var? MGFs?
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How to Separate Frequency from Severity

One approach is to define X = IB , where:

I is an indicator of claim with

Pr [I = 1] = q and Pr [I = 0] = 1− q

B is the claim amount given I = 1 (i.e. given a claim occurs).
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The distribution function:

Assume Pr [I = 1] = q and Pr [X < 0] = 0, then for x ≥ 0:

Pr [X ≤ x ] = Pr [X ≤ x |I = 0] Pr[I = 0] + Pr [X ≤ x |I = 1] Pr[I = 1]

= (1)(1− q) + (q) Pr [(1)B ≤ x |I = 1]

= 1− q + q Pr [B ≤ x ]
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Moments

The Mean3:

E [X ] = E [E [X |I ]] = E [X |I = 1] Pr [I = 1] = qE (B) ,

Variance4:

Var (X ) = Var (E [X |I ]) + E [Var (X |I )]
= [E (B)]2 Var (I ) + qVar (B)

= q (1− q) (E [B])2 + qVar (B)

after noting that E [X |I ] = I · E [B], Var(X |I ) = I 2 · Var(B).

3Recall the ”Tower Property”
4The first line makes use of the ”Law of Total Variance”



Generating Functions and Convolutions (cont.)
Frequency and Severity in the IRM

Generating Functions

MGF:

MX (t) = E [etX |I = 0] Pr(I = 0) + E [etX |I = 1] Pr(I = 1)

= 1− q + E [etB ]q = 1− q +MB(t)q

PGF:

PX (t) = E [tX |I = 0] Pr(I = 0) + E [tX |I = 1] Pr(I = 1)

= 1− q + PB(t)q
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Aggregate loss: S =
�n

i=1 Xi

Each Xi is separated by Xi = IiBi , for i = 1, 2, . . . , n

Mean: E [S ] =
�n

i=1 qiµi , where qi = Pr(Ii = 1) and
µi = E[Bi ]

Variance

Var(S) =
n�

i=1

[qiσ
2
i + qi (1− qi )µ

2
i ]

where σ2
i = Var(Bi )

MGF:

MS(t) =
n�

i=1

[1− qi +MBi
(t)qi ]

What is the PGF? (Exercise)
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A Familiar Example

Suppose claim amount X is distributed as:

�
P (X = 0) = 1/2,
fX (x) =

1
2βe

−βx , for β = 0.1, x > 0

1 Find the expected value of X .

2 Find I and B such that X = IB .
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Another Example

Example In an insurance portfolio, there are 15 insured.Ten of the
insured persons have 0.1 probability of making a claim, and the
other 5 have a 0.2 probability. All claims are independent and
follow Exp(λ) (Note: 1/λ is the mean). What is the MGF of the
aggregate claims distribution?
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