
The Collective Risk Model

MATH 4281 Risk Theory–Ruin and Credibility

Module 1 (cont.)

January 26, 2021



The Collective Risk Model

Last week we looked at some more applied insurance problems
with the IRM.

Today we will return to the CRM.

The mathematics of the CRM are slightly more complicated.

This will also flow nicely into Module 2.
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Different ways of separating frequency and severity

The IRM - deterministic n

main focus on the claims of individual policies
(whose number is a priori known)

−→ Individual Risk Model

The CRM - random N

main focus on claims of a whole portfolio
(whose number is a priori unknown)

−→ Collective Risk Model
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Definition

In the Collective Risk Model, aggregate losses become

S = X1 + . . .+ XN =
N�

i=1

Xi .

This is a random sum. We make the following assumptions:

N is the number of claims

Xi is the amount of the ith claim

the Xi ’s are i.i.d with CDF F (x) and PDF/PMF f (x)

Moments E [X k ] = µ�
k (particularly, E [X ] = µ�)1

the Xi ’s and N are mutually independent

1The primes so we can distiguish them from the moments of S i.e.
E [S ] = µ.
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Moments of S

We have

E [S ] = E [E [S |N]] = E [NE [X ]] = E [N]µ,

and

Var(S) = E [Var(S |N)] + Var (E [S |N])

= E [NVar(X )] + Var(µN)

= E [N]Var(X ) + µ2Var(N)

= E [N](µ�
2 − µ2) + µ2Var(N)

= E [N]µ�
2 + µ2 {Var(N)− E [N]} .
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MGF of S as a function of MX (t) and MN(t)
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PGF?
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So in conclusion we have:

MGF: MN (lnMX (t))

PGF: PS(t) = PN [PX (t)]
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Example

Assume that N is geometric with probability of success p. Find
MS(t) in terms of MX (t).
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Popular options for the distribution of N

Poisson(λ)

E [N] = Var(N) = λ
S is a compound Poisson with parameters (λ,FX (x))

Negative Binomial(r ,β)

E [N] < Var(N)
S is a compound Negative Binomial with parameters
(r ,β,FX (x))

Binomial(m, q)

E [N] > Var(N)
S is a compound Binomial with parameters (m, q,FX (x))
least popular
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Most Important Example!

If N is Poisson with intensity λ, then S =
�N

i=1 Xi follows a
Compound Poisson Distribution.

1 MGF:
MS(t) =?

2 PGF:
PS(t) = exp{λ(PX (t)− 1)}
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MGF of a compound Poisson

Really comes down to taking the MGF of a Poisson distribution.
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Quick Aside on PGFs, MGFs, etc

Why is MGF/PGF of compound Poisson so similar?

Well superficially:

E [tX ] = E [e log(t)X ], t > 0

Use PGFs for discrete distributions → gives a power series and
the results therin (e.g. Abel’s theorem).

Use MGFs for continuous → gives an integral transform and
results from Laplace/Fourier analysis can be used.

But as long as everything converges nicely- nothing stopping
you from taking MGFs of discrete and vice versa. May not be
useful however.
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Cumulants

Define the k-th cumulant of the random variable Y :

κk =
dk

dtk
κY (t)

����
t=0

=
dk

dtk
ln(MY (t))

����
t=0

Similar to Moments2 but with the key difference that
cumulative are related to Central Moments!

For example:

Mean: κ1

Variance: κ2

Skewness (γ1(Y )): κ3

κ
3/2
2

Kurtosis (γ2(Y )): κ4

κ2
2

2Related to our previous discussion there is also a Cumulant Generating
Function KY (t) = log(MY (t))
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Cumulants of a Compound Poisson

In the case of a compound Poisson random variable we have

κk =
dk

dtk
λ(MX (t)− 1)

����
t=0

= λ
dk

dtk
MX (t)

����
t=0

= λµ�
k .

Thus

E [S ] = λµ and Var(S) = λµ�
2

γ1(S) =
λµ�

3

(λµ�
2)

3
2

=
µ�
3√

λ(µ�
2)

3/2

γ2(S) =
λµ�

4

(λµ�
2)

2
=

µ�
4

λ(µ�
2)

2
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A Very Important Theorem

The sum of m independent compound Poisson (λi ,Fi (x)) random
variables, i.e.,

S =
m�

i=1

Si , Si ∼ (λi ,Fi (x))

is a compound Poisson random variable again with parameters

λ =
m�

i=1

λi and F (x) =
m�

i=1

λi

λ
Fi (x).
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So what?

Independent portfolios of losses can be easily aggregated.

Total claims paid over m years is compound Poisson, even if
the severity and frequency of losses vary across years.

The time value of money can be approximated by a change of
scale on Fi for each year.
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Proof
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Proof
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Distribution of S

It is possible to get a fairly general expression for the CDF of S by
conditioning on the number of claims:

FS(x) =
∞�

n=0

Pr[S ≤ x |N = n] Pr[N = n] =
∞�

n=0

F ∗n
X (x)pn,

where F ∗n
X (x) is the n-fold convolution of FX (x).

Note that

N will always be discrete, so this works for any type of RV X
(continuous, discrete or mixed)

however, the type of S will depend on the type of X
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Next Class: end of Module 1

Next class we will discuss various ways to approximate FS(x).

We will broadly do this is 2 ways:
1 Recursion algorithms
2 The Central Limit Theorem

I will also start to post a bank of study questions this week for
your Module 1 test in February.


