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Where we left off - the distribution of a Compound
Distribution

It is possible to get a fairly general expression for the CDF of S (a
”compound *blank* distribution”) by conditioning on the number
of claims:

FS(x) =
∞�

n=0

Pr[S ≤ x |N = n] Pr[N = n] =
∞�

n=0

F ∗n
X (x)pn,

where F ∗n
X (x) is the n-fold convolution of FX (x).

Note that

N will always be discrete, so this works for any type of RV X
(continuous, discrete or mixed)

however, the type of S will depend on the type of X
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Type of X

If X is continuous, S will generally be mixed:

with a mass at 0 because of Pr[N = 0] (if positive)

continuous elsewhere, but with a density integrating to
1− Pr[N = 0]

If X is mixed, S will generally be mixed:

Other than Pr[N = 0] consider if X is not continuous for
x > 0

with a density integrating to something ≤ 1− Pr[N = 0]
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But if X discrete?

For discrete X ’s there is a similar expression for the pmf of S :

fS(x) =
∞�

n=0

Pr[S = x |N = n] Pr[N = n] =
∞�

n=0

f ∗nX (x)pn,

Where f ∗0X (0) = 1 (and thus 0 anywhere else)

Obviously this can be implemented in a table and/or in a
program in the manner we have seen
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However...

However, if the range of N goes really to the infinity,
calculating fS(x) may require an infinity of convolutions of X

This formula is more efficient if the number of possible
outcomes for N is small

We will explore two algorithms for simplifying these
calculations in the next section
(see next section)
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Approximating S in the CRM: Discrete Methods
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Example

Suppose that N1,N2, · · · ,Nm are independent random variables.
Further, suppose that Ni follows Poisson(λi ). Let x1, x2, · · · , xm be
deterministic numbers. What is the distribution of the following:

x1N1 + · · ·+ xmNm?

Looks like Poi- but isnt!
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Ex (cont.)

So then we have a Cmpd. Poi. with 
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Theorem

If S ∼ compound Poisson(λ,Pr(X = xi ) = πi ), i = 1, . . . ,m then

S = x1N1 + . . .+ xmNm,

where the Ni ’s

represent the number of claims of amount xi

are mutually independent

are Poisson(λi = λπi )
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So What?

Allows to develop an alternative method for tabulating the
distribution of S that is more efficient as m is small called the
Sparse Vector Algorithm

S can be used to approximate the Individual Risk Model if
X = IB where I = 1 if N > 0 and B = xN.
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The sparse vector algorithm: examples

Suppose S has a compound Poisson distribution with λ = 0.8 and
individual claim amount distribution

x Pr [X = x ]

1 0.250
2 0.375
3 0.375

Compute fS (x) = Pr [S = x ] for x = 0, 1, ..., 6.
This can be done in two ways:

Basic method (seen earlier in the lecture): requires to
calculate up to the 6th convolution of X

Sparse vector algorithm: requires no convolution of X
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Solution - Basic Method

(1) (2) (3) (4) (5) (6) (7) (8) (9)

x f ∗0X (x) fX (x) f ∗2X (x) f ∗3X (x) f ∗4X (x) f ∗5X (x) f ∗6X (x) fS (x)

0 1 - - - - - - 0.4493
1 - 0.250 - - - - - 0.0899
2 - 0.375 0.0625 - - - - 0.1438
3 - 0.375 0.1875 0.0156 - - - 0.1624
4 - - 0.3281 0.0703 0.0039 - - 0.0499
5 - - 0.2813 0.1758 0.0234 0.0010 - 0.0474
6 - - 0.1406 0.2637 0.0762 0.0073 0.0002 0.0309
n 0 1 2 3 4 5 6

e−0.8 (0.8)n

n!
0.4493 0.3595 0.1438 0.0383 0.0077 0.0012 0.0002

The convolutions are done in the usual way

The fS(x) are the sumproduct of the row x and row Pr[N = n]

The number of convolutions (and thus of columns) will
increase by 1 for each new value of fS(x), until the infinity!
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Solution - Sparse Vector Algorithm

Thanks to out theorem we can write S = N1 + 2N2 + 3N3. Now only two
convolutions are needed! (columns (5) and (6))

(1) (2) (3) (4) (5) (6)
x Pr [N1 = x] Pr [2N2 = x] Pr [3N3 = x] Pr [N1 + 2N2 = x] fS (x)

= (2)*(3) = (4)*(5)

0 0.818731 0.740818 0.740818 0.606531 0.449329
1 0.163746 0 0 0.121306 0.089866
2 0.016375 0.222245 0 0.194090 0.143785
3 0.001092 0 0.222245 0.037201 0.162358
4 0.000055 0.033337 0 0.030974 0.049906
5 0.000002 0 0 0.005703 0.047360
6 0.000000 0.003334 0.033337 0.003288 0.030923
xi 1 2 3

λi = λπi 0.2 0.3 0.3

Pr[Ni = x/i ] e−0.2 (0.2)x

x!
e−0.3 (0.3)x/2

(x/2)!
e−0.3 (0.3)x/3

(x/3)!
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Another Algorithm

The (a, b, 0) family is a family of distributions with the following
property

Pr[N = k] =

�
a+

b

k

�
Pr[N = k − 1], k = 1, 2, · · · .

=⇒ Pr[N = n] can be obtained by recursion given Pr[N = 0].
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The exhaustive list of the (a, b, 0) members is:

Distribution a b Pr[N = 0]

Poisson(λ) 0 λ e−λ

Neg Bin(r ,β) β/1 + β (r − 1)β/(1 + β) (1 + β)−r

Binomial(m, q) −q/(1− q) (m + 1)q/(1− q) (1− q)m

e.g. for Poisson:
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Panjer’s recursion algorithm

The remarkable property of the (a, b) family allows us to
develop a recursive method to get the distribution of S for
discrete X ’s.

I will present the algorithm without proof here. But I attached
a supplemental document with Mikosch’s proof (which I prefer
to Klugman et al.).

The algorithm is very stable when N is Poisson and Negative
Binomial, but less stable when N is Binomial.
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Panjer’s Recursion Formula

If

S has a compound distribution on X

X is non-negative and discrete

N is of the (a, b, 0) family

Then

fS (s) =
1

1− afX (0)

s�

j=1

�
a+

bj

s

�
fX (j) fS (s − j) , s = 1, 2, . . . ,

with starting value

fS (0) =

�
Pr [N = 0] , if fX (0) = 0
PN [fX (0)] , if fX (0) > 0.
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Panjer’s recursion for compound Poisson

If S ∼ compound Poisson(λ, fX (x)) the algorithm reduces to

fS (s) =
λ

s

s�

j=1

j fX (j) fS (s − j)

with starting value
fS (0) = eλ(fX (0)−1)

(whether fX (0) is positive or not).
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Previous Example using the recursion formula

Effectively, the recursion formula boils down to

fS (s) =
1

s
[0.2fS (s − 1) + 0.6fS (s − 2) + 0.9fS (s − 3)] , (for s > 2)

with starting value

fS (0) = Pr [N = 0] = e−0.8 = 0.44933.

We have then

fS (1) = 0.2fS (0) = 0.2e−0.8 = 0.089866

fS (2) =
1

2
[0.2fS (1) + 0.6fS (0)] = 0.32e−0.8 = 0.14379

fS (3) =
1

3
[0.2fS (2) + 0.6fS (1) + 0.9fS (0)] = 0.3613e−0.8 = 0.16236

...
etc
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When X is continuous, it is possible to discretise its
distribution (advanced methods out of the scope of this
course).

Can be very accurate. If you are curious Sec. 9.6.5
”Constructing Arithmetic Distributions” in Klugman et al.

There also exists a corollary to Panjer for computing
convolutions in the IRM. This is called DePril’s Algorithm.

Panjer Recursion can be generalized to calculate the
“probability of ruin” in the Cramér-Lundberg model
(Module 2).
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Approximating S in the CRM: Normal
Approximation
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Approximations

Possible motivations:

It is not possible to compute the distribution of S e.g. no
detailed data is available except for the moments of S

The risk of having a sophisticated—but wrong—model is too
high if limited data is available to fit the model

A quick approximation is needed.

A higher level of accuracy is not required (does not justify the
resources necessary to calculate an exact probability)
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CLT approximation assuming symmetry

The Central Limit Theorem suggests that

FS (s) = Pr [S ≤ s] = Pr

�
S − E [S ]�
Var(S)

≤ s − E [S ]�
Var(S)

�

≈ Pr

�
Z ≤ s − E [S ]�

Var(S)

�
= Φ

�
s − E [S ]�
Var(S)

�
,

This approximation performs poorly

individual model: for small n (generally n ≤ 30)

collective model: for small λ (compound Poisson) and small r
(compound negative binomial)

for highly skewed distributions
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CLT Approximation allowing for skewness

Two ”Normal1 Power Levels”:

NP1: this is the CLT approximation

NP2: CLT but with a correction taking the skewness into
account. Given that x > E [S ] +

�
Var(S):

Pr

�
S − E [S ]�
Var(S)

≤ x

�
≈ Φ (s)

with

x = s +
γ1
6

�
s2 − 1

�
or s =

�
9

γ21
+

6x

γ1
+ 1− 3

γ1

1That is, power levels bellow 9,000
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Example

A total claim amount S has expected value 10000, standard
deviation 1000 and skewness 1. Use the CLT to find the probability
that S is greater than 13000.

NP1:

Pr(S > 13000) = Pr

�
S − E[S ]�
Var(E )

>
13000− 10000

1000

�

≈ 1− Φ(3) = 0.013.

NP2

Pr(S > 13000) = Pr

�
S − E[S ]�
Var(E )

>
13000− 10000

1000

�

≈ 1− Φ(
√
9 + 6× 3 + 1− 3)

= 1− Φ(2.29) = 0.011.
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End of Module 1


