MATH 4281 Risk Theory—Ruin and Credibility
Module 1 (Final Lecture)
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Where we left off - the distribution of a Compound
Distribution

It is possible to get a fairly general expression for the CDF of S (a
"compound *blank* distribution”) by conditioning on the number
of claims:

Fs(x) =Y Pr[S < x|N =n]Pr[N =n] = F{"(x)pn,
n=0 n=0

where F"(x) is the n-fold convolution of Fx(x).

Note that

@ N will always be discrete, so this works for any type of RV X
(continuous, discrete or mixed)

@ however, the type of S will depend on the type of X



Type of X

If X is continuous, S will generally be mixed:
e with a mass at 0 because of Pr[N = 0] (if positive)

@ continuous elsewhere, but with a density integrating to
1—Pr[N =0]

If X is mixed, S will generally be mixed:
@ Other than Pr[N = 0] consider if X is not continuous for
x>0
@ with a density integrating to something < 1 — Pr[N = 0]



But if X discrete?

o For discrete X's there is a similar expression for the pmf of S:

fs(x) = Z Pr[S = x|N = n] Pr[N = n] = Z <" (X)Pns
n=0 n=0

o Where £;°(0) = 1 (and thus 0 anywhere else)

@ Obviously this can be implemented in a table and/or in a
program in the manner we have seen



However...

@ However, if the range of N goes really to the infinity,
calculating fs(x) may require an infinity of convolutions of X

@ This formula is more efficient if the number of possible
outcomes for N is small

@ We will explore two algorithms for simplifying these
calculations in the next section
(see next section)
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Example
Suppose that Ny, No, - -, Np, are independent random variables.
Further, suppose that N; follows Poisson()\;). Let xq,x2,- -, xm be

deterministic numbers. What is the distribution of the following:
xuNg + -+« + N ?
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Ex (cont.)
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Theorem

If S ~ compound Poisson(\, Pr(X = x;) =m;), i =1,...,m then

S=xiNi+ ...+ xnNp,

where the N;'s
@ represent the number of claims of amount x;
@ are mutually independent

@ are Poisson(\; = \mr;)
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So What?

@ Allows to develop an alternative method for tabulating the
distribution of S that is more efficient as m is small called the
Sparse Vector Algorithm

@ S can be used to approximate the Individual Risk Model if
X =1IB where  =1if N >0 and B = xN.
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The sparse vector algorithm: examples

Suppose S has a compound Poisson distribution with A = 0.8 and
individual claim amount distribution

X PriX = x]
X, 1 0250 7, \ (icl of X
Ya 2 0.375 F
9 3 0.375 #

Compute fs (x) = Pr[S = x] for x =0,1, ..., 6.
This can be done in two ways: Medole

@ Basic method (seen earlier in the fechur®): requires to
calculate up to the 6th convolution of X

@ Sparse vector algorithm: requires no convolution of X
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Solution - Basic Method

() @) ©) @ ©) © @) ® ©)
x (vl CO N2 € N vl € M v CO N OO ML ok CO NI 'l ) M 24 €0

0 T - - - - = = 0.4493
1 - 0.250 - - - - - 0.0899

2 - 0.375 0.0625 - - - - 0.1438

3 - 0.375 0.1875 0.0156 - - - 0.1624

4 - - 0.3281 0.0703 0.0039 - - 0.0499

5 - - 0.2813 0.1758 0.0234 0.0010 - 0.0474

6 - - 0.1406 0.2637 0.0762 0.0073 0.0002 0.0309

n 0 1 2 3 4 5 6

n
e 08 O'HB 0.4493 0.3595 0.1438 0.0383 0.0077 0.0012 0.0002

@ The convolutions are done in the usual way
@ The fs(x) are the sumproduct of the row x and row Pr[N = n]

@ The number of convolutions (and thus of columns) will
increase by 1 for each new value of fs(x), until the infinity!
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Solution - Sparse Vector Algorithm

Thanks to out theorem we can write S = Ny + 2N, + 3N3. Now only two
convolutions are needed! (columns (5) and (6))

1) (2) (3) (4) (5) (6)
X Pr [N = x] Pr 2Ny = x] Pr[3N3 = x] Pr [Ny + 2Ny = x] fs (x)
= (2¥Q) = (4)%(5)
,"__d> 0 %0.818731 %0.740818 0.740818 0.449329
1 0.163746 0 0 N 0.089866
2 0.016375 0.222245 0 0.194090 0.143785
3 0.001092 0 0.222245 0.037201 0.162358
4 0.000055 0.033337 0 0.030974 0.049906
5 0.000002 0 0 0.005703 0.047360
6 0.000000 0.003334 0.033337 0.003288 0.030923
xi T 2 3
X = A7 0.2 03 0.3

- - .2)% _ 3)</2 x/3
PrN; = x/i] e~ 02 0X2. . o.sgo:; ‘ 03(0()(3)3)I

S
QV\ (0) Zf(u)J ly4a B}

Mrag, 0 =1, OVF ()

= (0.9Q74) 0 .40
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Another Algorithm

The (a, b,0) family is a family of distributions with the following
property

Pr[N = k] = <a+§) PrN=k—1], k=12,

— Pr[N = n] can be obtained by recursion given Pr[N = 0].
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Concluding remarks

The exhaustive list of the (a, b,0) members is:

Distribution a b Pr[N = 0]
Poisson(\) 0 A e

Neg Bin(r, 5) B/r+p | (r=1)8/(1+8) | A+8)"
Binomial(m, q) | —q/(1—q) [ (m+1)q/(1—-q) ] (1—¢q)"

e.g. for Poisson:
-\ n~) =) -
flo-a)= X AN AT V‘/\”'I: M o)
Y nly-1)! N

Bx—~ D, 1, o4
e
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Panjer’s recursion algorithm

@ The remarkable property of the (a, b) family allows us to
develop a recursive method to get the distribution of S for
discrete X's.

o | will present the algorithm without proof here. But | attached
a supplemental document with Mikosch's proof (which | prefer
to Klugman et al.).

@ The algorithm is very stable when N is Poisson and Negative
Binomial, but less stable when N is Binomial.
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Panjer’'s Recursion Formula

If
@ S has a compound distribution on X
@ X is non-negative and discrete
e N is of the (a, b,0) family
Then
1 > bj : , ®
@ fS(S)——@Z<a+?>fX(J)fS(S_J)a 5—].,2,...7

1-— an =1

with starting value

[ Pr[N=0], iffx(0)=0
fs(0) = { Py [fx (0)], if fi (0) > 0.
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Panjer's recursion for compound Poisson

If S ~ compound Poisson(), fx(x)) the algorithm reduces to

ijx ) fs (s —J)

with starting value
fs (0) = eMix(0)-1)

(whether fx(0) is positive or not).
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Previous Example using the recursion formula

Effectively, the recursion formula boils down to

0 fs(s) = %[0.2;‘5 (s — 1)+ 0.6fs (s —2) + 0.9% (s — 3)], (for s > 2J}
with starting value
fs (0) = Pr[N = 0] = e *® = 0.44933.
We have then
fs (1) = 0.2fs(0) = 0.2¢7%® = 0.089866

1
fs(2) = =[0.2fs 0.6f5 (0)] = 0.32¢7 9% = 0.14379
2

1 ~3
fs(3) = 3[0.2f5(2) +0.6f5 (1) +0.9f5 (0)] = 0.3613¢ %8 = 0.16236

etc
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Concluding remarks

@ When X is continuous, it is possible to discretise its
distribution (advanced methods out of the scope of this
course).

@ Can be very accurate. If you are curious Sec. 9.6.5
" Constructing Arithmetic Distributions” in Klugman et al.

@ There also exists a corollary to Panjer for computing
convolutions in the IRM. This is called DePril’s Algorithm.

@ Panjer Recursion can be generalized to calculate the
“probability of ruin” in the Cramér-Lundberg model
(Module 2).
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Approximations

Possible motivations:

@ It is not possible to compute the distribution of S e.g. no
detailed data is available except for the moments of S

@ The risk of having a sophisticated—but wrong—model is too
high if limited data is available to fit the model

@ A quick approximation is needed.

@ A higher level of accuracy is not required (does not justify the
resources necessary to calculate an exact probability)
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CLT approximation assuming symmetry

The Central Limit Theorem suggests that

S—E[S] _ s—E[S]

V/Var(S) = /Var(S)

5 - S—EIS] :¢<s—ﬂﬂ>7
Var(S)

— y/Var(S)
e individual model: for small n (generally n < 30)

Fs(s) = Pr[S<s]=Pr

~ Pr

This approximation performs poorly

@ collective model: for small A (compound Poisson) and small r
(compound negative binomial)

@ for highly skewed distributions
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CLT Approximation allowing for skewness

Two " Normal! Power Levels:
@ NP1: this is the CLT approximation ’X: 7}(8)

o NP2: CLT but with a correction taking the skewness into
account. Given that x > E[S] + /Var(S):

Pr S_—E[S]gx ~ ®(s)
v/ Var(S)
with
x:s+ﬂ(52—1) or s:1/22+6—x+1—i
TN !

o e
That is, power levels bellow 9,000
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Example

A total claim amount S has expected value 10000, standard
deviation 1000 and skewness 1. Use the CLT to find the probability
that S is greater than 13000.

e NPL:

Pr(S > 13000) =

o (5 —E[S] _ 13000 — 10000)

>
A /Var(E) 1000

1— ®(3) =0.013.

Q

o NP2

Pr(S >13000) = Pr (5 [S] 3000 0000)

>
\/Var(E) 1000
1-0(916x3+1-3)

1 — ®(2.29) = 0.011.
e

Q
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End of Module 1
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