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Recall the following

Since it's been since the 4th we will review what we covered of
Ruin Theory so far. Recall we covered:

@ Stochastic processes and their properties (independent
\stationary increments, etc...) .
@ Counting processes, specifically Poisson processes.

@ Compound Poisson processes.

@ Leading to the Cramér-Lundberg process:

U(t) = up + ct
N——

Revenue .
—

Losses
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The probability of ruin

@ Recall the Cramér-Lundberg model:

N(t)
U( —U0+Ct—ZX

@ The time to ruin T is defined as
= inf{t > 0|U(t) < 0}.

@ The probability that the company would be ruined by time t is

denoted by
Y(ug, t) = Pr[T < t].
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Avoiding Ultimate Ruin

o Finally, the probability of ultimate ruin is

Y(up) = Pr(T < 00) = tILngo Y(ug, t) > Y(u, t).

@ The Net Profit Condition (NPC):

c< /\E[X,] = ’l/)(Uo) =1

@ To ensure the NPC holds we add our "safety loading” :

—

c = (14 0)AE[X]
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Recall we introduced an approximation

We can approximate 1) easy via The Lundberg Inequality:

P(u) < e

Where R (the adjustment coefficient) solves the equation!

erpt — E[erst]

Today we will discuss this in more detail.

"Where S; = Efvz(lt) Xi
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The Lundberg Inequality

Avoiding Ultimate Ruin

In the Cramér-Lundberg model, consider the excess of losses over
premiums over the interval [0, t]: S(t) — ct. We define the
adjustment coefficient R as the first positive solution of the
following equation in r:

Ms(t)—ct(r) = E [er(s(t)—ct)} — o retMIMx(N-1] — 1

Recall ¢ = (1 + 0)AE[X]. So, the adjustment coefficient R is the
first positive of the following equation:

14+ (14 0)rE[X] = Mx(r)



The Lundberg Inequality

Does such an R exist?

r—,_, e"ECx]
N \‘—7 { 1"([ #O)rE[)(j

————
@ Recall that Jesen's inequalty gives 1+ (1+0)rE[X] =:Mx(r) > e=IX] .
@ How else could this fail?



The Lundberg Inequality

The Theorem

@ Let R > 0 be the adjustment coefficient. If {U(t)} is a
Cramér-Lundberg process with 8 > 0, then for u >0

e—Ru

E[e RUD|T < o]

P(u) =

@ Since U(T) < 0, we have then (Lundberg's exponential upper
bound)
P(u) < e R



The Lundberg Inequality

An Example

Assume X ~ exp(f) (the mean is 1/3). Find R and ¥(u).
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The Lundberg Inequality

An Example

35 ’H’n/; R—c [‘?—%
= b’__

(1+2) K CR)
- ,? @
[+ ©
> -
= | ww) £ exp =¥ 4]
Laes+ mw'/‘
(8. Yen= oee(fael g
l“" .}/L‘sf




Proving the Cramér-Lundberg Inequality

Proving the Cramér-Lundberg Inequality




Proving the Cramér-Lundberg Inequality



Proving the Cramér-Lundberg Inequality

Proving our theorems

To start show that {e RY(!)} is a martingale?
al, ¢ Ke is o 5. Moo
- Coe.
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Hence the definition of "R"}
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A very very useful theorem

(Given we don’t have all the machinery we need at this point- we
will define a stopping time as a random time dependent on another
stochastic process exhibiting some behaviour)

Theorem (Optimal Stopping Theorem)

Given a bounded stopping time T, i.e. T <ty < oo for a
martingale® M; them:

Mo = E[M7]

?For those who know we must also impose right continuity
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An example: Gambler's Ruin

A gambler enters a casino with n dollars and plays a game with a
win probability p. He gains $1 for every win and losses $1 for every
loss. He leaves when he wins N or looses everything. What is the
probability he leaves ruined?
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An example: Gambler's Ruin
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Proof of the Cramér-Lundberg Inequality
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