MATH 4281 Risk Theory–Ruin and Credibility

Module 2: Ruin Theory (cont.)

Feb 23, 2021

 $\mathbf{A} \square \mathbf{P}$

996

医下 医

Reinsurance Review Applying Ruin Theory to Reinsurance

Reinsurance Review

< 回 > < 四 > < 四 > < 四 > < 四 > : :

₽.

990

Reinsurance definitions review

Proportional

- quota share: the proportion is the same for all risks
- surplus: the proportion can vary from risk to risk
- Non-Proportional
 - (individual) excess of loss: on each individual loss (X_i)
 - stop loss: on the aggregate loss (S)

O = O Cheap (reinsurance premium is the expected value), or non cheap (reinsurance premium is loaded) O > O

Reinsurance definitions review

- In proportional reinsurance the retained proportion α defines who pays what:
 - the insurer pays $Y = \alpha X$
 - the reinsurer pays $Z = (1 \alpha)X$
- In (individual) excess of loss reinsurance for each individual loss X, the reinsurer pays the excess over a retention (excess point) d
 - the insurer pays $Y = \min(X, d)$
 - the reinsurer pays $Z = (X d)_+$
- These are the examples we will study today.

Applying Ruin Theory to Reinsurance

• • • •

996

ж.

æ

Why would Ruin theory help?

- Ruin theory gives us a model to study *options* about reinsurance
- Note that even if $\psi(u)$ can't be calculated, we can still play with the adjustment coefficient R and have qualitative results about $\psi(u)$.
- We can adjust the adjustment coefficient (hence its name..) to meet a goal, such as
 - maximize $R \Leftrightarrow$ minimize $\psi(u)$
 - find the cheapest reinsurance such that $\psi(u)$ is inferior to some level

Assumptions

Let 0 ≤ h(x) ≤ x be the amount paid by the reinsurer for a claim with amount x i.e:

• Reinsurance is non cheap and that the loading on reinsurance premiums is $\xi > \theta > 0$. So the reinsurance premium say c_h is:

ማፍሮ

$$\frac{\left(e_{c_{+}}\right)}{c_{+}\left(1+\theta\right)\lambda E[X]} c_{h} = (1+\xi)\lambda E[h(X)]$$

Assumptions

• With reinsurance, the Cramér-Lundberg process becomes

$$U(t) = u + (c - c_h)t - \sum_{i=1}^{N(t)} (X_i - h(X_i)).$$

$$Lowir \quad free Kerner for the second second$$

• With reinsurance, the adjustment coefficient, *R_h*, is then the non-trivial solution to

$$\lambda \left[\underbrace{\mathcal{M}_{X-h(X)}(r) - 1}_{q \; \chi} \right] = (c - c_h)r.$$

Equivalently,
$$\lambda + (c - c_h) r = \lambda \int_0^\infty e^{r[x - h(x)]} p(x) \, dx.$$

Reinsurance Review Applying Ruin Theory to Reinsurance

Example 1: Proportional Reinsurance

Suppose/claims form & compound Poisson process, with
$$\lambda = 1$$
 and
 $p(k) = 1/for 0 < x < 1$. Further premiums are received
continuously at the rate of $c \neq 1$. Find the adjustment coefficient
if propertional reinsurance is purchased with $\alpha = 0.5$ and with
reinsurance loading equal to $\xi = 100\%$.
 D_{OOV} ; Q_{OV} Q_{VS} f_{OV}
 f_{1}^{α}
 f_{1}^{α} Q_{1}^{α} , Q_{1}^{α} Q_{1}^{α} , Q_{1}^{α}
 f_{1}^{α} Q_{1}^{α} , Q_{1}^{α} , Q_{1}^{α} , Q_{2}^{α} , Q_{1}^{α}
 f_{1}^{α} Q_{1}^{α} , Q_{1}^{α} , Q_{2}^{α} , Q_{2}^{α} , Q_{1}^{α}
 f_{2}^{α} , Q_{1}^{α} , Q_{2}^{α} , Q_{2}^{α} , Q_{1}^{α} , Q_{2}^{α}
 f_{1}^{α} , Q_{1}^{α} , Q_{2}^{α} , Q_{2}

Reinsurance Review Applying Ruin Theory to Reinsurance

For
$$\mathcal{R}_{L}$$
 solve; $\lambda \left[\mathcal{M}_{X-h(\chi)}(r) - I \right] = (c - c_{\mu})r$

(i)
$$M_{X-h(X)}(r) = ?$$

 $X \sim \exp(1) : X - h(X) = X - (1 - x)X = x X$
 $M_{X-h(X)(r)} = E[e^{(r-x)X}] = \frac{1}{1 - \alpha r}$

$$\begin{array}{c} (1) & c_{u} = 2 \\ c_{u} = (1 + 0.4) \ \lambda \ E \left[(1 - a) \ \chi \right] = 1.4 \ \lambda (1 - a) \\ \Rightarrow \ c_{-c_{u}} = 1.25 \ \lambda \ -1.4 \ \lambda (1 - a) = \lambda (1.4 \ \kappa \ -0.15) \\ \end{array}$$

Reinsurance Review Applying Ruin Theory to Reinsurance

2 (ト) 考 筆 ト ,

Example 2: Excess of Loss Reinsurance

Consider the Gramér-Lundberg process with
$$X \sim \exp(1)$$
, $\theta = 0.25$,
and $\xi = 0.4$ There is proportional reinsurance with retention α ,
i.e. $X - h(X) \neq \alpha X$. What is the retention α that will maximize
 R_{6} ?
 $\chi \sim e_X \rho(1)$, $\theta = 0.25$, $\xi = 0.4$, $h(X) = (X - \frac{1}{2})_+$
 $(x \sim e_X)^{(r)} = \int_0^\infty e^{r(X - h(X))} e^{-X} dX = \int_0^{1} e^{rX} e^{-X} dX + \int_0^\infty e^{rd} e^{-X} dX$
 $= \int_0^\infty e^{r(X - h(X))} e^{-X} dX = \int_0^1 e^{rX} e^{-X} dX + \int_0^\infty e^{rd} e^{-X} dX$
 $= \int_0^\infty e^{-h(X) - h(X)} e^{-X} dX = \int_0^1 e^{rX} e^{-X} dX + \int_0^\infty e^{rd} e^{-X} dX$

Reinsurance Review Applying Ruin Theory to Reinsurance

$$c_{h} = 1.4 \ \lambda \ E[h(X)] = 1.4 \ \lambda \int_{J}^{\Phi} (X-J)e^{-X} dx = 1.4 \ \lambda e^{-J}$$
So the of for R_{h} is:

$$I + (1.25 - 1.4e^{-J})r - \frac{1 - re^{-J(I-r)}}{1 - r} = 0$$

$$V_{nu}ble to isolate R_{m}$$
terms of J

$$\implies Use \ Solver$$

Reinsurance Review Applying Ruin Theory to Reinsurance

くロンス 聞き くぼとく ぼう

₽.

900

Solution

Use software to maximize R_h , we have

 $d^* = 0.9632226$

and

 $R_h^* = 0.3493290,$

which is much higher (better) than the best we could achieve with proportional reinsurance.

እሳራ

A Theorem

lf

- We are in a Cramér-Lundberg setting
- We are considering two reinsurance treaties, one of which is excess of loss
- Both treaties have same expected payments and same premium loadings

then

• The adjustment coefficient with the excess of loss treaty will always be at least as good (high) as with any other type of reinsurance treaty