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Recall the outline of this course

Q1: What do you do when L is equal to a sum of smaller RVs?
⇒ Module 1: Aggregate Loss Models

Q2: How do you introduce time to this model?
⇒ Module 2: Ruin Theory

Q3: How do I estimate the parameters of the model for L...if I
don’t have a nice heterogeneous sample?
⇒ Module 3: Credibility
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Recall the beginning of this module

Q1 What happens if we can’t pay all the claims?
⇒ Ruin

Q2 How do we set premiums to guarantee that we can?
⇒ We can’t 100% eliminate ruin but we can add safety
loading to at least make it less than sure

Q3 How does Time factor in to this?
In models like the Cramér-Lundberg process we can quantify
how our premium and (random) loss rates affect ultimate ruin
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Stochastic Processes

Randomness + Time = Stochastic Processes

A stochastic process is any collection of random variables
X (t), t ∈ T . This stochastic process is denoted as

{X (t) , t ∈ T} .

In this class we studied 3 kinds of stochastic processes:

1 Counting Processes (e.g. Poisson)
2 Compound Poisson Processes (e.g. Aggregate Losses)
3 The Cramér-Lundberg Process (Cash + Revenue - Aggregate

Losses)
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Poisson process

A counting process {N (t) , t ≥ 0} is a Poisson process with rate
λ, for λ > 0, if:

1 N (0) = 0;

2 it has independent increments; and

3 the number of events in any interval of length t has a Poisson
distribution with mean λt. That is, for all s, t ≥ 0,n = 0, 1, ...

Pr [N (t + s)− N (s) = n] = e−λt (λt)
n

n!
.
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Compound Poisson process

We define a Compound Poisson process {S(t), t ≥ 0} like so:

S(t) =

N(t)�

i=1

Xi .

Where:

{N(t)} is a Poisson process with parameter λ

{Xi} are iid ∼ P(x)
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The Cramér-Lundberg process

Model for the surplus of a non-life insurer at time t:

U(t) = u0 + ct� �� �
Revenue

−
N(t)�

i=1

Xi

� �� �
Losses

where

u0 initial surplus

c premium rate:
�N(t)

i=1 Xi aggregate loss up to time t
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The Cramér-Lundberg process

Furthermore if:

the premium rate is c = (1 + θ)λE [X ]

where θ is called the relative security loading.

and,
�N(t)

i=1 Xi is a Compound Poisson (Xi independent of N
Poisson)

=⇒ {U(t), t ≥ 0} is called the Cramér-Lundberg process.
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We spoke about how there are many different ways to
quantify decision making.

We spoke about how utility was developed by economists and
ruin theory was developed by actuarial science.

The key criteria of ruin theory: we want to minimize the
probability that the surplus of an insurance company becomes
negative!
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The probability of ruin

Recall the Cramér-Lundberg model:

U(t) = u0 + ct −
N(t)�

i=1

Xi

The time to ruin T is defined as

T = inf{t ≥ 0|U(t) < 0}.

The probability that the company would be ruined by time t is
denoted by

ψ(u0, t) = Pr[T < t].
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Avoiding Ultimate Ruin

Finally, the probability of ultimate ruin is

ψ(u0) = Pr(T < ∞) = lim
t→∞

ψ(u0, t) ≥ ψ(u, t).

The Net Profit Condition (NPC):

c ≤ λE[Xi ] ⇒ ψ(u0) = 1

To ensure the NPC holds we add our ”safety loading” :

c = (1 + θ)λE[X ]
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How to calculate the probability of ruin

Usually you cannot do so analytically (with exceptions for
exponential and mixtures of exponential losses).

However the The Lundberg Inequality provides us with a way
of approximating the ruin probability such that we can derive
useful qualitative results.

It is a meaningful result assuming moments of the severity
exist and we are using the Cramér-Lundberg model.



Motivation
Stochastic Processes

Decision Theory and Ruin
The Lundberg Inequality

Optimal Reinsurance

The adjustment coefficient

In the Cramér-Lundberg model, consider the excess of losses over
premiums over the interval [0, t]: S(t)− ct. We define the
adjustment coefficient R as the first positive solution of the
following equation in r :

MS(t)−ct(r) = E
�
er(S(t)−ct)

�
= e−rcteλt[MX (r)−1] = 1,

Recall c = (1 + θ)λE [X ]. So, the adjustment coefficient R is the
first positive of the following equation:

1 + (1 + θ)rE [X ] = MX (r)
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The Theorem

1 Let R > 0 be the adjustment coefficient. If {U(t)} is a
Cramér-Lundberg process with θ > 0, then for u ≥ 0

ψ(u) =
e−Ru

E
�
e−RU(T )|T < ∞

� .

2 Since U(T ) < 0, we have then (Lundberg’s exponential upper
bound)

ψ(u) < e−Ru.
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An example-why is this bound useful?
1In some ruin process, the individual claims have a gamma(2, 1)
distribution. Determine the loading factor � as a function of the
adjustment coefficient R. Also, determine R(�). Using a sketch of
the graph of the mgf of the claims, discuss the behaviour of R as a
function of � .

1Kaas 4.3 #8
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An example
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Assumptions

Let 0 ≤ h(x) ≤ x be the amount paid by the reinsurer for a
claim with amount x i.e:

h(X ) = (1− α)X for proportional reinsurance.
h(X ) = (X − d)+ for excess of loss reinsurance.

Reinsurance is non cheap and that the loading on reinsurance
premiums is ξ > θ > 0. So the reinsurance premium say ch is:

ch = (1 + ξ)λE [h(X )]
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Assumptions

With reinsurance, the Cramér-Lundberg process becomes

U(t) = u + (c − ch)t −
N(t)�

i=1

(Xi − h(Xi )).

With reinsurance, the adjustment coefficient, Rh, is then the
non-trivial solution to

λ
�
mX−h(X )(r)− 1

�
= (c − ch)r .

Equivalently,

λ+ (c − ch) r = λ

� ∞

0
er [x−h(x)]p (x) dx .
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A Theorem

If

We are in a Cramér-Lundberg setting

We are considering two reinsurance treaties, one of which is
excess of loss

Both treaties have same expected payments and same
premium loadings

then

The adjustment coefficient with the excess of loss treaty will
always be at least as good (high) as with any other type of
reinsurance treaty


