MATH 4281 Risk Theory–Ruin and Credibility

Summary of Module 2

•

• • • •

996

通り 通

March 2, 2021

< 🗆 >

SOC

- 2 Stochastic Processes
- Obcision Theory and Ruin
- The Lundberg Inequality
- **5** Optimal Reinsurance

Motivation

Stochastic Processes Decision Theory and Ruin The Lundberg Inequality Optimal Reinsurance

Motivation

₽.

206

Recall the outline of this course

Q1: What do you do when L is equal to a sum of smaller RVs? \Rightarrow Module 1: Aggregate Loss Models

Q2: How do you introduce **time** to this model? \Rightarrow Module 2: Ruin Theory

Q3: How do I estimate the parameters of the model for *L*…if I don't have a nice heterogeneous sample? ⇒ Module 3: Credibility

200

Recall the beginning of this module

Q1 What happens if we can't pay all the claims? \Rightarrow Ruin

Q2 How do we set premiums to guarantee that we can? ⇒ We can't 100% eliminate ruin but we can add safety loading to at least make it less than sure

Q3 How does Time factor in to this? In models like the Cramér-Lundberg process we can quantify how our premium and (random) loss rates affect ultimate ruin

Stochastic Processes

Stochastic Processes

Randomness + Time = Stochastic Processes

• A *stochastic process* is any collection of random variables $X(t), t \in T$. This stochastic process is denoted as

 $\left\{ X\left(t
ight) ,t\in T
ight\} .$

- In this class we studied 3 kinds of stochastic processes:
 - Ounting Processes (e.g. Poisson)
 - Ompound Poisson Processes (e.g. Aggregate Losses)
 - The Cramér-Lundberg Process (Cash + Revenue Aggregate Losses)

Poisson process

A counting process $\{N(t), t \ge 0\}$ is a *Poisson process* with rate λ , for $\lambda > 0$, if:

- **1** N(0) = 0;
- it has independent increments; and
- **③** the number of events in any interval of length *t* has a Poisson distribution with mean λt . That is, for all *s*, *t* ≥ 0, *n* = 0, 1, ...

$$\Pr[N(t+s) - N(s) = n] = e^{-\lambda t} \frac{(\lambda t)^n}{n!}.$$

ヘロト ヘロト ヘヨト ヘヨト 一手 しつくの

Compound Poisson process

We define a Compound Poisson process $\{S(t), t \ge 0\}$ like so:

$$S(t) = \sum_{i=1}^{N(t)} X_i.$$

200

Where:

- $\{N(t)\}$ is a Poisson process with parameter λ
- $\{X_i\}$ are iid $\sim P(x)$

The Cramér-Lundberg process

Model for the surplus of a non-life insurer at time *t*:

$$U(t) = \underbrace{u_0 + ct}_{\text{Revenue}} - \underbrace{\sum_{i=1}^{N(t)} X_i}_{\text{Losses}}$$

200

where

- *u*₀ initial surplus
- c premium rate:
- $\sum_{i=1}^{N(t)} X_i$ aggregate loss up to time t

The Cramér-Lundberg process

Furthermore if:

- the premium rate is $c = (1 + \theta)\lambda E[X]$
- where θ is called the relative security loading.
- and, $\sum_{i=1}^{N(t)} X_i$ is a Compound Poisson (X_i independent of N Poisson)

প্রত

 \implies { $U(t), t \ge 0$ } is called the Cramér-Lundberg process.

Decision Theory and Ruin

996

ж.

イロト イ語ト イモト イモト

• We spoke about how there are many different ways to quantify decision making.

• We spoke about how utility was developed by economists and ruin theory was developed by actuarial science.

• The key criteria of ruin theory: we want to minimize the probability that the surplus of an insurance company becomes negative!

The probability of ruin

• Recall the Cramér-Lundberg model:

• The time to ruin T is defined as

$$T = \inf\{t \ge 0 | U(t) < 0\}.$$

• The probability that the company would be ruined by time *t* is denoted by

$$\psi(u_0, t) = \Pr[T < t].$$

< 🗆 🕨

SOC

æ

æ

Avoiding Ultimate Ruin

• Finally, the probability of ultimate ruin is

$$\psi(u_0) = \Pr(T < \infty) = \lim_{t \to \infty} \psi(u_0, t) \ge \psi(u, t).$$

• The Net Profit Condition (NPC):

$$c \leq \lambda \mathbb{E}[X_i] \Rightarrow \psi(u_0) = 1$$

• To ensure the NPC holds we add our "safety loading" :

$$c = (1 + \theta)\lambda \mathbb{E}[X]$$

< 口 > < 団 > < 注 > < 注 > 、 注 = ・ つへで

The Lundberg Inequality

996

通り 通

A 🗆 E A 👘 E A.

How to calculate the probability of ruin

- Usually you cannot do so analytically (with exceptions for exponential and mixtures of exponential losses).
- However the The Lundberg Inequality provides us with a way of approximating the ruin probability such that we can derive useful qualitative results.
- It is a meaningful result assuming moments of the severity exist and we are using the Cramér-Lundberg model.

The adjustment coefficient

In the Cramér-Lundberg model, consider the excess of losses over premiums over the interval [0, t]: S(t) - ct. We define the adjustment coefficient R as the first positive solution of the following equation in r:

$$M_{S(t)-ct}(r) = E\left[e^{r(S(t)-ct)}\right] = e^{-rct}e^{\lambda t[M_X(r)-1]} = 1,$$

Recall $c = (1 + \theta)\lambda E[X]$. So, the adjustment coefficient *R* is the first positive of the following equation:

$$1 + (1+\theta)rE[X] = M_X(r)$$

ማፍሮ

The Theorem

• Let R > 0 be the adjustment coefficient. If $\{U(t)\}$ is a Cramér-Lundberg process with $\theta > 0$, then for $u \ge 0$

$$\psi(u) = \frac{e^{-Ru}}{E\left[e^{-RU(T)}|T<\infty\right]}.$$

Since U(T) < 0, we have then (Lundberg's exponential upper bound)

$$\psi(u) < e^{-Ru}$$

እሳራ

An example-why is this bound useful?

¹In some ruin process, the individual claims have a gamma(2, 1) distribution. Determine the loading factor ℓ as a function of the adjustment coefficient *R*. Also, determine $R(\ell)$. Using a sketch of the graph of the mgf of the claims, discuss the behaviour of *R* as a function of ℓ .

$$:) \underbrace{Fmd}_{K(L)} + (1+L) \cdot 2R = M_{x}(R) \left| \begin{array}{c} Rrc_{n} || & x \sim \Gamma(K, \theta) \\ \Rightarrow M_{x}(t) = \left(\frac{1}{1-\theta}\right)^{\kappa} \\ + (1+L) \left(2R = \frac{1}{(1-R)^{2}}\right)^{\kappa} \\ \Rightarrow \quad L = \frac{R(3-2R)}{2(1-R)^{2}}$$

ማፍሮ

¹Kaas 4.3 #8

An example

Optimal Reinsurance

くロン 人間 とく ほとく ほう

996

ж.

Assumptions

- Let 0 ≤ h(x) ≤ x be the amount paid by the reinsurer for a claim with amount x i.e:
 - $h(X) = (1 \alpha)X$ for proportional reinsurance.
 - $h(X) = (X d)_+$ for excess of loss reinsurance.

 Reinsurance is non cheap and that the loading on reinsurance premiums is ξ > θ > 0. So the reinsurance premium say c_h is:

$$c_h = (1+\xi)\lambda E[h(X)]$$

Assumptions

• With reinsurance, the Cramér-Lundberg process becomes

$$U(t) = u + (c - c_h)t - \sum_{i=1}^{N(t)} (X_i - h(X_i)).$$

• With reinsurance, the adjustment coefficient, *R_h*, is then the non-trivial solution to

$$\lambda\left[m_{X-h(X)}(r)-1\right]=(c-c_h)r.$$

Equivalently,

$$\lambda + (c - c_h) r = \lambda \int_0^\infty e^{r[x - h(x)]} p(x) dx.$$

200

A Theorem

lf

- We are in a Cramér-Lundberg setting
- We are considering two reinsurance treaties, one of which is excess of loss
- Both treaties have same expected payments and same premium loadings

then

• The adjustment coefficient with the excess of loss treaty will always be at least as good (high) as with any other type of reinsurance treaty