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Motivation

Recall the outline of this course

Q1: What do you do when L is equal to a sum of smaller RVs?
= Module 1: Aggregate Loss Models

Q2: How do you introduce time to this model?
= Module 2: Ruin Theory

Q3: How do | estimate the parameters of the model for L...if |
don’t have a nice heterogeneous sample?
= Module 3: Credibility



Motivation

Recall the beginning of this module

Q1 What happens if we can’t pay all the claims?
= Ruin

Q2 How do we set premiums to guarantee that we can?
= We can't 100% eliminate ruin but we can add safety
loading to at least make it less than sure

Q3 How does Time factor in to this?
In models like the Cramér-Lundberg process we can quantify
how our premium and (random) loss rates affect ultimate ruin
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Stochastic Processes

Stochastic Processes

Randomness + Time = Stochastic Processes

@ A stochastic process is any collection of random variables
X (t), t € T. This stochastic process is denoted as

{X(t),teT}.

@ In this class we studied 3 kinds of stochastic processes:

@ Counting Processes (e.g. Poisson)

@ Compound Poisson Processes (e.g. Aggregate Losses)

© The Cramér-Lundberg Process (Cash + Revenue - Aggregate
Losses)



Stochastic Processes

Poisson process

A counting process {N (t),t > 0} is a Poisson process with rate
A, for A >0, if:

Q@ N(0)=0;
@ it has independent increments; and

© the number of events in any interval of length t has a Poisson
distribution with mean At. That is, for all s,t > 0,n=0,1, ...

At)"
00"

PriN(t+s) — N(s) = n] ~



Stochastic Processes

Compound Poisson process

We define a Compound Poisson process {5(t), t > 0} like so:

N(t)

Where:

e {N(t)} is a Poisson process with parameter \
e {X;} areiid ~ P(x)



Stochastic Processes

The Cramér-Lundberg process

Model for the surplus of a non-life insurer at time t:

N(t)
u(t) = uo—l—ct—ZX
Revenue =1
Losses

where
@ up initial surplus
@ C premium rate:

° vaz(f) X; aggregate loss up to time t



Stochastic Processes

The Cramér-Lundberg process

Furthermore if:

@ the premium rate is ¢ = (1 + ) \E[X]
@ where 0 is called the relative security loading.

@ and, Z )X is a Compound Poisson (X; independent of N
Poisson)

— {U(t),t > 0} is called the Cramér-Lundberg process.
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Decision Theory and Ruin

@ We spoke about how there are many different ways to
quantify decision making.

@ We spoke about how utility was developed by economists and
ruin theory was developed by actuarial science.

@ The key criteria of ruin theory: we want to minimize the
probability that the surplus of an insurance company becomes
negative!



Decision Theory and Ruin

The probability of ruin

@ Recall the Cramér-Lundberg model:

N(t)
U(t) = ug + ct — ZX,-
i=1 # U=

—_—

@ The time to ruin T is defined as
T =inf{t > 0|U(t) < 0}.

@ The probability that the company would be ruined by time t is
denoted by
Y(ug, t) = Pr[T < t].




Decision Theory and Ruin

Avoiding Ultimate Ruin

o Finally, the probability of ultimate ruin is

Y(up) = Pr(T < o0) = tILngo P(uo, t) > YP(u, t).
@ The Net Profit Condition (NPC):
c< /\E[X,] = ’l/)(Uo) =1

@ To ensure the NPC holds we add our "safety loading” :

c = (14 0)AE[X]
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The Lundberg Inequality

How to calculate the probability of ruin

@ Usually you cannot do so analytically (with exceptions for
exponential and mixtures of exponential losses).

@ However the The Lundberg Inequality provides us with a way
of approximating the ruin probability such that we can derive
useful qualitative results.

@ It is a meaningful result assuming moments of the severity
exist and we are using the Cramér-Lundberg model.



The Lundberg Inequality

The adjustment coefficient

In the Cramér-Lundberg model, consider the excess of losses over
premiums over the interval [0, t]: S(t) — ct. We define the
adjustment coefficient R as the first positive solution of the
following equation in r:

MS(t)fct(r) = FE [er(s(t)*ct)} — efrcte)\t[MX(r)fl] _ 1’

Recall ¢ = (1 + #)AE[X]. So, the adjustment coefficient R is the
first positive of the following equation:

1+ (1+0)rE[X] = Mx(r)



The Lundberg Inequality

The Theorem

@ Let R > 0 be the adjustment coefficient. If {U(t)} is a
Cramér-Lundberg process with 6 > 0, then for u >0

—Ru
W) = Fe R T <o

@ Since U(T) < 0, we have then (Lundberg’s exponential upper
bound)
Y(u) < e R



The Lundberg Inequality

An example-why is this bound useful?

lIn some ruin process, the indivji(} aI[c?Jaims have a gamma(2, 1)
{ o, Z

distribution. Determine the IGadin fac’:gor £ as a function of the
adjustment coefficient R. Also, determine R(¢). Using a sketch of
the graph of the mgf of the claims, discuss the behaviour @s a
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The Lundberg Inequality

An example
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Optimal Reinsurance

Assumptions

@ Let 0 < h(x) < x be the amount paid by the reinsurer for a
claim with amount x i.e:

e h(X) = (1— a)X for proportional reinsurance.
e h(X) = (X — d)4 for excess of loss reinsurance.

@ Reinsurance is non cheap and that the loading on reinsurance
premiums is & > 6 > 0. So the reinsurance premium say ¢, is:

ch = (1+&AE[A(X)]



Optimal Reinsurance

Assumptions

@ With reinsurance, the Cramér-Lundberg process becomes

N(t)

U(t) = u+(c—cn)t— > (Xi— h(X))).

i=1

@ With reinsurance, the adjustment coefficient, Ry, is then the
non-trivial solution to

A [mx_h(x)(r) — 1] = (C - Ch)r.

Equivalently,

A+ (c—cp)r=A / e h0N p () dix.
0



Optimal Reinsurance

A Theorem

If
o We are in a Cramér-Lundberg setting

@ We are considering two reinsurance treaties, one of which is
excess of loss

@ Both treaties have same expected payments and same
premium loadings

then

@ The adjustment coefficient with the excess of loss treaty will

always be at least as good (high) as with any other type of
reinsurance treaty



