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Recall from the first lecture

Q1: What do you do when L is equal to a sum of smaller RVs?
⇒ Module 1: Aggregate Loss Models

Q2: How do you introduce time to this model?
⇒ Module 2: Ruin Theory

Q3: How do I estimate the parameters of the model for L...if I
don’t have a nice heterogeneous sample?
⇒ Module 3: Credibility
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Simple/Classical Example: Auto Insurance

Say I am insuring auto losses. I want the net premium for an
individual policy but...

Lots of ways to segment drivers e.g. age, location, car
make/model, education, climate etc...

Every relevant subdivision creates smaller and smaller
sub-samples.

Very quickly I can start to run into a lack of data on each
sub-sample. Not advisable to estimate using simple mean of
sub-sample.

How can I incorporate data from the total sample of all
drivers?
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Credibility Theory

Need to set a premium for different groups of insurance
contracts when:

1 there are reasons to believe that groups have different risks
(heterogeneous), but there is only limited experience (data) for
each group of contracts,

2 But there is quite a lot of experience when combined with
other contracts which are more or less related.

Claim amounts Xjt are known for group (or individual)
j = 1, 2, ..., J and time periods t = 1, 2, ...,T .

How to find the optimal estimators of claims for the group for
next period.
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Two extreme approaches

Premium for group j can be based on two extreme positions:

1 Use overall mean X of the data [makes sense only if the
portfolio is homogeneous].

2 Use the average X j in group j [makes sense only if the group
is sufficiently large and arguably different from other groups].

Can we combine these in some way?
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Reconciling these approaches

Around 1900, American actuaries got the idea to use a
weighted average of these extremes as a compromise:

Credibility Premium = zjX j + (1− zj)X ,

where zj is called the credibility factor representing the weight
attached to individual data.

The credibility weight will be a value between 0 and 1, with it
being close to 1 if:

group j is large enough; and/or
claims for the group are very predictable; and/or
the variability between the groups is very large.
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The problem

Assume:

every risk j in the collective is characterized by its individual
risk profile θj ∈ Θ that does not change over time and that we
can’t observe.

Θ may be either qualitative (e.g. good/bad) or quantitative
(e.g. average number of accidents per year).

we have T observations Xj1, . . . ,XjT

We want to estimate

µ(θj) = E [Xj ,T+1|θj ]

but θj is unknown to the insurer...
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Two random variables

It is obvious that the losses Xj1,Xj2, . . . are random and
depend on θj .

Given θj , the losses Xj1,Xj2, . . . are independent.

Since the risk profile can’t be observed, we will also model it
as random1.

Thus µ(θ) becomes a random variable we will use Bayesian
techniques to estimate.

1Another interpretation of probability i.e. a measure of belief or certainty
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First we define some notation

The prior distribution is denoted by a CDF Π(θ) and pdf π(θ).

The likelihood function has CDF F (x |θ) and pdf f (x |θ).
The probability of the data has CDF F (x) and pdf f (x).

The posterior distribution has CDF Π(θ|x) and pdf π(θ|x).
And they are all related through Bayes’ Theorem:

π(θ|x) = f (x | θ)π(θ)
f (x)

=
f (x | θ)π(θ)�
φ f (x |φ) dφ

=
f (x | θ)π(θ)�

φ f (x | φ)π(φ)dφ
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Estimation

Let θ be a variable we want to estimate

we don’t know the value of θ

it is drawn out of a population distributed like Π(θ)

We want to create an estimator δ̂ of θ.

What criteria should it respect?

For example: unbiased

and..?
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The concept of loss function

Estimation error:

when we estimate something, we (almost surely) make an
error

of course, we want to minimize that error

are there errors we dislike more than others?

(for example it might be better to overestimate a loss than
underestimate it)

⇒ The loss function L(θ, δ̂)
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Loss functions

The loss function L(θ, δ̂):

is a function of θ and δ̂

reflects the weight we want to give to estimation errors

is the function we want to minimize

minimization (of its expectation) yields the associated
estimator
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The absolute error (or deviation) loss function

The function:
L(θ, θ̂) = |θ − δ̂| (1)

The idea:

the importance of the error is proportional to the distance
between θ and δ̂

positive errors and negative errors have the same weight
(symmetrical)
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The quadratic (MSE) loss function

The function:
L(θ, θ̂) = (θ − δ̂)2 (2)

The idea:

the farther δ̂ is from θ, the (exponentially) worse it is

positive errors and negative errors of identical magnitude have
the same weight (symmetrical)
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Almost constant loss functions

The function:

L(θ, θ̂) =

�
c δ̂ �= θ

0 δ̂ = θ
(3)

The idea:

the result of the estimation is binary: right or wrong

if it is wrong, the cost is c

When c = 1, the above loss function is also called an
all-or-nothing loss function.
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Other loss functions

any loss function could be used

the only restriction is the creativity of the user

(of course, some restrictions just make sense – such as L(θ, δ̂)
positive for all θ)

For example,

L(θ, δ̂) =

�
α(δ̂ − θ) δ̂ > θ

β(θ − δ̂) δ̂ < θ
(4)

the cost is α times the error if θ is overestimated and β times
the error if θ is underestimated

this is a generalization of the absolute error loss function,
which is the case α = β = 1
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The Risk Function

L(θ, δ̂(x)), the loss function, if θ is the ”true” parameter and
δ̂(x) is the value taken by the estimator if X is observed

The risk function of the estimator ĝ

Rδ̂(θ) := EX|θ[L(θ, δ̂(X))] =
�

Rn

L(θ, δ̂(x)) dFX |θ(x|θ) (5)
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Frequentist Risk function

In the case of frequentist inference we use the empirical
distribution for our likelihood.

In the case of the MSE we have:

In the EDF-x is the parameter itseld i.e. theta=x!



Introduction
Crash Course on Bayesian Estimation

Bayes Risk

However in the Bayesian case we augment our risk function with
our prior:

R(δ̂) =

�

Θ
Rδ̂(θ) dΠ(θ) =

�

Θ
EX |θ[L(θ, δ̂)] dΠ(θ)

=

�

Θ

�

Rn

L(θ, δ̂(x)) dF (x|θ) dΠ(θ)

=

�

Rn

��

Θ
L(θ, δ̂(x)) dΠ(θ|x)

�
dF (x). (6)

Where in the last step we apply Bayes theorem to obtain the
quantity in brackets.
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Bayes estimator

The Bayes estimator is defined such that Bayes risk R(δ̂) is
minimal:

�δ : δ̂ | R(δ̂) is minimal (7)

From (6) it follows that given X = x, �g(x) takes the value which
minimizes the error

�

Θ
L(θ, δ̂(x)) dΠ(θ|x).

In other words,

�δ(x) is the estimator which minimizes Bayes risk

�δ(x) is the estimator which minimizes the expected loss
with respect to the posterior distribution of θ

�δ(x) is ”the best” estimator with respect to the loss
function
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Example 1 The Bayes estimator under the quadratic loss is the
mean of the posterior distribution, i.e.

�δ(x) =
�

θdΠ(θ|x) = E [θ|x ]

Example 2 The Bayes estimator under the absolute error loss is

the median of the posterior distribution, i.e.

�δ(x) = θ | Π(θ|x) = 0.5

Example 3 The Bayes estimator under the all-or-nothing loss is
the mode of the posterior distribution, i.e.

�δ(x) = θ | Π(θ|x) is maximal
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Exercise

Prove example 1. In other words, show that the Bayes estimator
under the quadratic loss is the mean of the posterior distribution.
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Bayes estimate for the mean

Assume that:

θ ∼ N (µ, τ)

x |θ ∼ N (θ,σ)

What is the Bayes estimate for the mean given some sample
of xi for i = 1...n?
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