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Recall from the first lecture

Q1: What do you do when L is equal to a sum of smaller RVs?
= Module 1: Aggregate Loss Models

Q2: How do you introduce time to this model?
= Module 2: Ruin Theory

Q3: How do | estimate the parameters of the model for L...if |
don’t have a nice heterogeneous sample?
= Module 3: Credibility
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Simple/Classical Example: Auto Insurance

Say | am insuring auto losses. | want the net premium for an
individual policy but...

@ Lots of ways to segment drivers e.g. age, location, car

make/model, education, climate etc...

@ Every relevant subdivision creates smaller and smaller
sub-samples.

@ Very quickly | can start to run into a lack of data on each
sub-sample. Not advisable to estimate using simple mean of
sub-sample.

@ How can | incorporate data from the total sample of all
drivers?
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Credibility Theory

@ Need to set a premium for different groups of insurance
contracts when:

@ there are reasons to believe that groups have different risks
(heterogeneous), but there is only limited experience (data) for
each group of contracts,

@ But there is quite a lot of experience when combined with
other contracts which are more or less related.

e Claim amounts Xj; are known for group (or individual)
j=1,2,...,J and time periods t = 1,2, ..., T.

@ How to find the optimal estimators of claims for the group for
next period.
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Two extreme approaches

Premium for group j can be based on two extreme positions:

© Use overall mean X of the data [makes sense only if the

portfolio is homogeneous]. L Y. ,
A Dewreg a0 ON

@ Use the average 7j in group j [makes sense only if the group
is sufficiently large and arguably different from other groups].

L’“-y, AH dr.‘uf" 2 a 7LD"”' o/

. . t) li‘_.ou/‘l'fnuJ
Can we combine these in some way? 1 /
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Reconciling these approaches

@ Around 1900, American actuaries got the idea to use a
weighted average of these extremes as a compromise:

Credibility Premium = ijj +(1- zJ)Y

where z; is called the credibility factor representing the weight
attached to individual data.

@ The credibility weight will be a value between 0 and 1, with it
being close to 1 if:

e group j is large enough; and/or
o claims for the group are very predictable; and/or
e the variability between the groups is very large.



Introduction

The problem

Assume:

@ every risk j in the collective is characterized by its individual
risk profile f/; € © that does not change over time and that we
can't observe.

@ O may be either qualitative (e.g. good/bad) or quantitative
(e.g. average number of accidents per year).

@ we have T observations Xji,..., Xt

We want to estimate
w(0;) = E [Xj 7+110}]

but 6; is unknown to the insurer...
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Two random variables

st (v ;
@ It is obvious that the losses Xj1, Xjo, ... are random and
depend on ;.

ASfume
@ Giwen 0;, the losses Xj1, Xjo, ... are independent.

@ Since the risk profile can’t be observed, we will also model it
as random?.
1 fv.o
@ Thus p(f) becomes a random variable we will use Bayesian
techniques to estimate.

! Another interpretation of probability i.e. a measure-of belief or-certainty
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First we define some notation

@ The prior distribution is denoted by a CDF [1(#) and pdf 7(9).
The likelihood function has CDF F(x|0) and pdf f(x|6).

The probability of the data has CDF F(x) and pdf f(x).

The posterior distribution has CDF M(#|x) and pdf 7(6]x).
And they are all related through Bayes' Theorem:

7(6)x) =
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Estimation

Let 6 be a variable we want to estimate
@ we don't know the value of 0

@ it is drawn out of a population distributed like 1(#)

We want to create an estimator § of 0.
@ What criteria should it respect?
@ For example: unbiased

@ and..?
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The concept of loss function

Estimation error:
@ when we estimate something, we (almost surely) make an
error
@ of course, we want to minimize that error

@ are there errors we dislike more than others?

o (for example it might be better to overestimate a loss than
underestimate it)

= The loss function L(6, )
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Loss functions

The loss function L(6,4):

@ is a function of ¢ and@
o reflects the weight we want to give to estimation errors
@ is the function we want to minimize

@ minimization (of its expectation) yields the associated
estimator
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The absolute error (or deviation) loss function

The function:
L(0,0) = |6 — 9 (1)
The idea:

@ the importance of the error is proportional to the distance
between 6 and §

@ positive errors and negative errors have the same weight
(symmetrical)
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The quadratic (MSE) loss function

The function:
L(0,0) = (0 - 6)? (2)
The idea:
o the farther § is from 6, the (exponentially) worse it is

@ positive errors and negative errors of identical magnitude have
the same weight (symmetrical)
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Almost constant loss functions

The function:
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The idea:
@ the result of the estimation is binary: right or wrong
e if it is wrong, the cost is ¢

When ¢ = 1, the above loss function is also called an
all-or-nothing loss function.
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Other loss functions

@ any loss function could be used

@ the only restriction is the creativity of the user

o (of course, some restrictions just make sense — such as L(6, §)
positive for all 6)

For example,

" 5>6
L(9,5):{ P (4)

@ the cost is a times the error if 6 is overestimated and [ times
the error if 6 is underestimated

@ this is a generalization of the absolute error loss function,
which is the case a = 5 =1
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The Risk Function

o L(0,5(x)), the loss function, if @ is the "true” parameter and
d(x) is the value taken by the estimator if X is observed

@ The risk function of the estimator g

Ri(0) = BulL(0.500)] = | L(0.5() dFulelt) (9

—
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Frequentist Risk function

o In the case of frequentist inference weuse the empirical
distribution for our likelihood.

@ In the case of the MSE we have:

Eopmicel pdf; OF 7 LU§(x-x) wher Gef 8 o
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Bayes Risk

However in the Bayesian case we augment our risk function with
our prior:

RE) = [ R(0)an®) = [ Eqll(0.5) an(o)
_ // (6,5(x)) dF(x[9) d(6)
- / [/@ L(Q,d(x))dl’l(@x)} dF (x). (6)

Where in the last step we apply
quantity in brackets.

ayes theorem to obtain the

-T(‘lf'] '_’( c.[l /L“./'I ’t I!V:..}'
Fr A sy f o



Crash Course on Bayesian Estimation

Bayes estimator

The Bayes estimator is defined such that Bayes risk R(S) is
minimal: B

d 1 0| R(0) is minimal (7)
From (6) it follows that given X = x, gA(;) takes the value which
minimizes the error

/ L(0,5(x)) dM(6]x).
©

In other words,

@ 0(x) is the estimator which minimizes Bayes risk

@ 0(x) is the estimator which minimizes the expected loss
with respect to the posterior distribution of 6

@ §(x) is "the best” estimator with respect to the loss
function
o
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* Example 1 The Bayes estimator under the quadratic loss is the
mean of the posterior distribution, i.e.

5(x) = /9dﬂ(9|x) — E9)x]

—

Example 2 The Bayes estimator under the absolute error loss is
the median of the posterior distribution, i.e.

5(x) =0 | N(f)x) = 0.5
Example 3 The Bayes estimator under the all-or-nothing loss is
the mode of the posterior distribution, i.e.

6/(\;) =60 | NM(f|x) is maximal
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Exercise

Prove example 1. In other words, show that the Bayes estimator
under the quadratic loss is the mean of the posterior distribution.
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Bayes estimate for the mean

Assume that:
@ 0~ N(u,T)
e x|0 ~ N(0,0)
@ What is the Bayes estimate for the mean given some sample
of x; for i = 1...n7
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