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The Story so Far

Credibility

o Last class we discussed how actuaries began to use estimates
of the kind:
Credibility Premium = zX; + (1 — z)X

In situations (like auto policies) where individual rate setting
is hard.

@ We then spoke about how such estimates can be justified
through a Bayesian framework. Here we could incorporate
past experience and expertise into our model.



The Story so Far

Recall the problem

Assume:

@ every risk j in the collective is characterized by its individual
risk profile f/; € © that does not change over time and that we
can't observe.

@ © may be either qualitative (e.g. good/bad) or quantitative
(e.g. average number of accidents per year).

@ we have T observations Xji,..., Xt
We want to estimate

w(0;) = E[X; 74110)]

but 6; is unknown to the insurer...



The Story so Far

Bayesian Thinking

@ Recall in the Bayesian framework probability represents
"belief’ in the form of the distribution on 8. Recall Bayes
theorem:

f(x|6
m(0]x) = [%] ()
—_———
the effect of data/evidence

@ Given some sample x, we update our beliefs about # and this
changes our Prior m(0) into our Posterior m(0|x).



The Story so Far

Bayesian Thinking

@ This isn't good enough though, we want to score our errors in
some way. Some errors are less significant than others.

@ So we make use of a loss function. Given an estimator 0(x)
for 6 we want to minimize:

/ L(6, 5(x)) dIT(6]).
(€]

'//Esimuf

@ We showed last class that under a quadratic loss:

5(x) = /Gdﬁ(e\x) — E[o)x]
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The Bayes Premium

The Bayes Premium

@ Remember though that we are specifically interested in the
mean of X; 11.

@ To that end we we introduce the following. Given € the mean
of X is given by 1(0) and we use the loss function:

L(6, i(x)) = (u(0) — (x))?

@ From last class we know this will give:

pBaves = 1(9) = E [(©)|x] = /@ 1(0)m(6]x)

i.e. the expected mean under the posterior!



The Bayes Premium

Other premiums

This also gives use the notion of the coIIectlve premium (a number)

~ELETRe) Y

Pl = m = [ (0) aTT0) = EDX 7 » 300
€]
N B [.c. t)()ow'mu —Free

o without experience/sample peoll — pBayes,
(Think of zX; + (1 — z) X)

@ The quadratic loss of the collective premium is

E [(m — 1(©))?] = E [Var(u(©)X)] + Var (E[s(®)|X))

Quad. Loss of PBayes




The Bayes Premium

How to calculate PBaves

Raw materials:
@ T realizations x of X
@ the distribution of X|O,

Fxje(x|0) = Pr[X < x|© = 0]
@ the a priori distribution of ©,
rn(e) = Pr[© < 0]

Procedure:
@ Determine the a posteriori distribution m(x|6)
o Calculate PB#¢s with the help of 7(x|6)



The Bayes Premium

Example 1:Poisson—gamma

Suppose that given © = 0, past losses Xi,--- , X1 are independent
and Poisson distributed with Poisson parameter 6§ which follows a
gamma distribution with probability density function

/ ¢ J

ﬂaea—le—Gﬁ

7(0) = O 6 > 0.

Determine the Bayesian premium.(* 71 Qf /4/9) nll - /ﬂos»‘m-,,,)

T(01= F (2)T6) , fixeyee)
FK
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The Bayes Premium

Example 2:Exponential-gamma

fxjo(x10) = e {x>0,0 > 0} Exponential(6)
7(0) = %00‘ le=h% f{a,5>0,0 >0} gamma(a, )

P‘.ﬁél/ﬂ o (1)

T oa) " 0°
w[a(x)och@)w(?); (_} O ’)
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The Bayes Premium

Example 3: Bernoulli-Beta

fxjo(x]0) = 6*(1 — )™ {x = 0,1}Bernouilli(f)

(60) = MNa+ 5)

= r(a)r(ﬁ)ea_l(l -0 {0< 6 < 1}Beta(a,3) {a, > 0}



The Bayes Premium

Exercise: Geometric—Beta

fxjo(x|0) = 0(1 — 0)* {x € N} Geometric(6)
m(0) = FSHA0 (1= 0)° {0<0 <1} Beta(a,f) {o, 8> 0}

_ (a8 (at 1) (B+x)
ix(X) = Forresorn X €N

u(&):lge and m=

a—1
() is Beta(@, 8) with

a=a+T and 525—#5.
Thus,
pBayes _ B _B+S

a—-1 a+T-1
e

= zX+(1— ith z=———.
zX+(1—z)m with z T —



The Bayes Premium

Exercise: Normal-Normal

02

m(0) = ¢ (9;—1"7) {—00 < 0, m < 400,01 > 0} Normal(m, o%)

fio(x10) = ¢ (ﬂ)) {—00 < x,0 < +00,02 > 0} Normal(d, 02)
fx(x)=¢o <7%> {—00 < x < 400} Normal(m, 0% + o3)
uw(@) =60 and m=m.

7x(0) is Normal(m, 5%) with

- _0oiStaim . _oios
TO'% +U§ b TU% +U%
Thus,
25 2 _ T
pBaves — m — 01;_—0227 =zX+(1l-z)m with z=
Toi + o5 T+o /01



A General Model

A General Model




A General Model

A useful result

——

For which pairs fx|g(x|0) and 7(0) is pBaves — 1,(O) linear?

—~—

Equivalently, when is ;(©) of the form

wO)=zX+(1-2z)m?

@ It is the case for about half a dozen famous examples.
o Jewell (1974) unified these examples

o Gerber (1995) proposed an alternative formulation



A general model

Suppose
fxje(x]0) = a(x)c-(:)(e)X7 x €A
where
c(6) = /A a(x) - b(6)*dx,
and
° c(6)=™ - b()* - b'(0)
m(0) = T 7
where

d(mo, x0) = / c(6)~™ - b(OY - b'(6)do.



A General Model

A general model

Then

@ 7y(0) is in the same family of 7(#), with the following
updated parameter values (for mg and xp):

-
mg+ T and xo—l—ZXj
j=1
@ and finally,
—— x+S+1 S
pBayes — —E[O|X]= =—————=2zX+(1—
1) = E[OIX] = 2 = 2X 4 (L= 2)m
with
v
zZ =
m0+T



