MATH 4281 Risk Theory–Ruin and Credibility

Module 3: Credibility Theory finale and the last lecture!

March 25th, 2021

SOC

1 Non-Parametric Bühlmann model

2 The Bühlmann-Straub model

Non-Parametric Bühlmann model

996

ж.

* 日 > * 西 > * 法

→ く進き

Recall from last class

- X_{jt} : claims size of policy *j* during year *t*.
- Available data, $1 \le j \le J$, $1 \le t \le T$:

year t	1	2	3	•••	Т	Risk	Mean	
policy $j = 1$	X ₁₁	<i>X</i> ₁₂	<i>X</i> ₁₃	•••	X_{1T}	θ_1	$\bar{X}_{1\Sigma}$	
policy $j = 2$	X ₂₁	<i>X</i> ₂₂	<i>X</i> ₂₃	•••	X_{2T}	θ_2	$\bar{X}_{2\Sigma}$	
policy $j = 3$	<i>X</i> ₃₁	<i>X</i> ₃₂	<i>X</i> ₃₃	•••	X_{3T}	θ_3	$\bar{X}_{3\Sigma}$	
÷	:	:	÷	۰.	÷	:	:	
policy $j = 1$ policy $j = 2$ policy $j = 3$ \vdots policy $j = J$	X_{J1}	X_{J2}	X_{J3}		X_{JT}	θ_J	$\bar{X}_{J\Sigma}$	
X_{11} X_{12} X_{17} are <i>iid</i> conditional on Θ								

X₁₁, X₁₂, ..., X_{JT} are *iid* conditional on Θ.

•
$$\mu(\theta_j) = E[X_{jt}|\Theta = \theta_j]$$

• $\sigma^2(\theta_j) = Var(X_{jt}|\Theta = \theta_j)$

$$P_{j,T+1}^{cred} = z\bar{X}_{j\Sigma} + (1-z)m, \quad i = 1, \dots, J$$
 (1)

Nonparametric estimation (unbiaised estimators)

Estimation of $E[\mu(\Theta)] = m$:

$$\bar{X}_{\Sigma\Sigma} = \frac{1}{J} \sum_{j=1}^{J} \bar{X}_{j\Sigma} = \frac{\sum_{j=1}^{J} \sum_{t=1}^{T} X_{jt}}{JT}$$
(2)

Estimation of $E[\sigma^2(\Theta)] = s^2$:

$$\hat{s}^{2} = \frac{1}{J} \sum_{j=1}^{J} \hat{s}_{j}^{2} = \frac{1}{J} \sum_{j=1}^{J} \left[\sum_{t=1}^{T} \frac{(X_{jt} - \bar{X}_{j\Sigma})^{2}}{T - 1} \right]$$
(3)

Nonparametric estimation (unbiaised estimators)

Estimation of $Var(\mu(\Theta)) = a$: (Bühlmann's estimator) $\hat{a}_B = Max \left\{ \underbrace{\sum_{j=1}^{J} (\bar{X}_{j\Sigma} - \bar{X}_{\Sigma\Sigma})^2}_{J-1} - \frac{1}{T} \hat{s}^2; 0 \right\}$ (4) (CAS's estimator) (CAS's estimator)

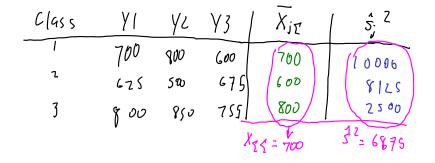
$$\hat{a}_{CAS} = Max \left\{ \frac{\sum_{j=1}^{J} \sum_{t=1}^{T} (X_{jt} - \bar{X}_{\Sigma\Sigma})^2}{JT - 1} - \hat{s}^2; 0 \right\}$$
(5)

• If $\hat{a} = 0$ then z = 0, which makes sense (all risks have the same parameter)

You are given the following past claims data on a portfolio of three classes of policyholders:

	Year						
Class	1	2	3				
1	700	800	600				
2	625	500	675				
3	800	850	750				

Estimate the Bühlmann credibility premium to be charged in year 4 for each class of policyholder.



1) Find
$$X_{j} \leq ''$$
 '. $X_{ll} = \frac{700 + 800 + 600}{3} = 700$
2) $\int_{1}^{1} \int_{1}^{1} \int_{1}^{2} \int_{1}^$

Non-Parametric Bühlmann model The Bühlmann-Straub model

.

.

くロトス語 とく 酒とく 酒とい

1 **ગ**૧૯

$$\hat{k} = \frac{3^2}{a_{\text{M}}} \sim 0.9$$

Non-Parametric Bühlmann model The Bühlmann-Straub model

5) We have,
$$k$$
 and $k = T=3$
 $\Rightarrow 2 = \frac{T}{T+k} = \frac{3}{3+0.9} \approx 0.8$

6)
$$(alc + 4_0 + 3ibl - 4_0 + 1-2) \hat{m}$$

 $p_1^{arid} = z \times_{12} + (1-2) \hat{m}$
 $= (0.8) 700 + (0.2) 700 = 700$
 $p_2^{cred} = (0.8) 600 + (0.2) 700 = 620$

The Bühlmann-Straub model

996

ж.

A 🗆 E A 🗐 E A.

- - - - 連 - ト

Adding more realism to the Bühlmann model

- Often we have somewhat coarse data available to us (this is changing but in 1970 when this model was introduced it was even more true).
- Many lines of business have a premium of the type "volume measure" times "premium rate".
- In this case we use an extension of Bühlmann model: Bühlmann-Straub.
- by far the most used and the most important credibility model for insurance practice.

The model

There are $1 \le j \le J$ classes of risk (or contracts). For the *j*-th class/contract:

- S_{jt} is the aggregate claim amount in year t ($1 \le t \le T$)
- w_{jt} is the "volume" associated to S_{jt} in year t

• $X_{jt} = S_{jt}/w_{jt}$ is the claim amount per unit of volume in year t

 One (my favourite) interpretation: average claim costs per year at risk in year t if w_{jt} is the number of years at risk during year t. That is if:

Assumptions

- risk class/contract j is characterized by its specific risk parameter θ_j , which is the realization of a rv Θ_i
- Conditional on Θ_i , the $\{X_{jt} : t = 1, 2, \dots, T\}$ are iid with $\mu(\theta_j) = E[X_{jt} | \Theta = \theta_j]$ but now:¹

$$Var(X_{jt}|\Theta = \theta_j) = \frac{\sigma^2(\theta_j)}{w_{jt}}$$

- the pairs $(\Theta_1, \textbf{X}_1), (\Theta_2, \textbf{X}_2), \ldots$ are independent
- $\Theta_1, \Theta_2, \ldots$ are iid (from the structural distribution)

¹In the previous interpretation, $\mu(\theta_j) = E[Y_j]$ and $\sigma^2(\theta_j) = Var(Y_j)$.

"New Quantities"

Risk *j*:

- individual risk premium $\mu(\theta_j) = E[X_{jt}|\Theta = \theta_j]$
- variance within individ. risk $\sigma^{2}(\theta_{j}) = w_{jt} Var(X_{jt}|\Theta = \theta_{j})$
- aggregate volume $w_{j\Sigma} = \sum_{t=1}^{T} w_{jt}$
- weighted mean of outcomes $\bar{X}_{j\Sigma} = \sum_{t=1}^{T} \frac{w_{jt}}{w_{j\Sigma}} X_{jt}$

Collective:

- collective premium $m = E[\mu(\Theta)]$
- variance between individual risk premiums
 a = Var(μ(Θ))
- average variance within individual risks $s^2 = E[\sigma^2(\Theta)]$
- aggregate volume $w_{\Sigma\Sigma} = \sum_{j=1}^{J} w_{j\Sigma}$
- weighted mean of outcomes $\bar{X}_{\Sigma\Sigma} = \sum_{j=1}^{J} \frac{w_{j\Sigma}}{w_{\Sigma\Sigma}} \bar{X}_{j\Sigma}$

くロンス聞き くほとくほとう

2

እሳራ

If m, s^2 and a are known

The credibility estimator in the Bühlmann-Straub model is given by

$$\mathcal{P}^{cred}_{j,T+1} = z_j ar{X}_{j\Sigma} + (1-z_j)m = m + z_j (ar{X}_{j\Sigma} - m),$$

where

$$z_{j} = \frac{w_{j\Sigma}}{w_{j\Sigma} + K}$$
$$K = \frac{E[\sigma^{2}(\Theta)]}{Var(\mu(\Theta))} \bigg\} z$$
?

Remarks:

- the credibility factor z_j now depends on j
- if $w_{jt} = 1$, then $w_{j\Sigma} = T$ and z_j is equivalent to the z of the simple Bühlmann model

.

If s^2 and a are known but m has to be estimated

$$P_{j,T+1}^{cred} = z_j \bar{X}_{j\Sigma} + (1-z_j)\widehat{m} = \widehat{m} + z_j (\bar{X}_{j\Sigma} - \widehat{m}),$$

where

$$\widehat{m} = \sum_{j=1}^{J} \frac{z_j}{z_{\Sigma}} \overline{X}_{j\Sigma}, \quad z_{\Sigma} = \sum_{j=1}^{J} z_j$$

Remarks:

- it can be shown that \hat{m} is a better estimator of m than $\bar{X}_{\Sigma\Sigma}$
- Quadratic loss:

$$E[(\widehat{m}+z_j(\overline{X}_{j\Sigma}-\widehat{m})-\mu(\theta_j))^2]=a(1-z_j)\left(1+\frac{1-z_j}{z_{\Sigma}}\right)$$

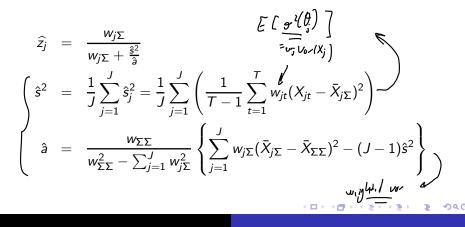
৩৫৫

• This makes sense- in an non-i.i.d sample, the weighted average where the weights are inversely proportional to the variances is BLUE.

If m, s^2 and a have to be estimated

$$P^{cred}_{j,T+1} = \widehat{z_j} \overline{X}_{j\Sigma} + (1 - \widehat{z_j}) \widehat{m} = \widehat{m} + \widehat{z_j} (\overline{X}_{j\Sigma} - \widehat{m}),$$

Where we use the following unbiased (weighted) sample statistics:



Numerical Example

Past claims data on a portfolio of two groups of policyholders are given below:

		Year				
	Group	. 1	2	3	4	
, Total Claim Amount	1	Sit 8000	11,000	15,000	_	
Number in Group		wir 40	50	70	75	
/ Total Claim Amount	2	20,000	24,000	19,000	_	
^l Number in Group		100	120	115	95	

Estimate the Bühlmann-Straub credibility premium to be charged (in year 4 for each group of policyholder.

< ロト < 四ト < 四ト < 五ト < 五ト -

ъ.

206

 $k = \frac{5^2}{9} \approx 137.9$

Non-Parametric Bühlmann model The Bühlmann-Straub model

 $Z_{2} : \frac{\omega_{2} g}{\omega_{2} g + K} = \frac{335}{335 + 157.91} = 0.71$

$$\begin{array}{l} \begin{array}{c} 1 \\ 1 \end{array} \end{array} \right) \begin{array}{c} \begin{array}{c} 1 \\ M \end{array} \end{array} Z \end{array} Z \begin{array}{c} \frac{2j}{Z_{\ell}} \\ \overline{Z_{\ell}} \end{array} \overline{X_{j}} \\ = \\ \begin{array}{c} 0.54 \\ 0.54 + 0.71 \end{array} \end{array} \right) \begin{array}{c} (212.5) + \\ \begin{array}{c} 0.7 \\ 0.54 + 0.71 \end{array} \right) \\ = \\ 149.60 \end{array}$$

$$\begin{aligned} &\mathcal{F} \\ &\mathcal{F}_{1} \\ &= \omega_{14} \left[z_{1} \overline{X_{12}} + (1 - 2_{1}) \widehat{M} \right] \\ &= 75 \left[0.54(212.5) + (0.46)(148.60) \right] = 15454.87 \\ &\mathcal{F}_{2} \\ \\ &\mathcal{F}_{2} \\ \end{aligned}$$